Nothing Special   »   [go: up one dir, main page]

Skip to main content

Adaptive Vision System for Segmentation of Echographic Medical Images Based on a Modified Mumford-Shah Functional

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4678))

  • 1399 Accesses

Abstract

This paper presents a novel adaptive vision system for accurate segmentation of tissue structures in echographic medical images. The proposed vision system incorporates a level-set deformable model based on a modified Mumford-Shah functional, which is estimated over sparse foreground and background regions in the image. This functional is designed so that it copes with the intensity inhomogeneity that characterizes echographic medical images. Moreover, a parameter tuning mechanism has been considered for the adaptation of the deformable model parameters. Experiments were conducted over a range of echographic images displaying abnormal structures of the breast and of the thyroid gland. The results show that the proposed adaptive vision system stands as an efficient, effective and nearly objective tool for segmentation of echographic images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ching, H.K., et al.: Stepwise Logistic Regression Analysis of Tumor Contour Features for Breast Ultrasound Diagnosis. In: Proc. IEEE Ultr Symp., Atlanta, GA, USA, vol. 2, pp. 1303–1306. IEEE, Los Alamitos (2001)

    Google Scholar 

  2. Papini, E., et al.: Risk of Malignancy in Nonpalpable Thyroid Nodules: Predictive Value of Ultrasound and Color-Doppler Features. J. Clin Endocrin & Metabol 87(5), 1941–1946 (2002)

    Article  Google Scholar 

  3. Zimmer, Y., Tepper, R., Akselrod, S.: A two-dimensional extension of minimum cross entropy thresholding for the segmentation of ultrasound images. Ultr. Med. and Biol. 22, 1183–1190 (1996)

    Article  Google Scholar 

  4. Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pat. Anal. Mach. Intel. 16(6), 641–647 (1994)

    Article  Google Scholar 

  5. Hao, X., Bruce, C., Pislaru, C., Greenleaf, J.F.: A Novel Region Growing Method for Segmenting Ultrasound Images. Proc. IEEE Int. Ultr. Symp. 2, 1717–1720 (2000)

    Google Scholar 

  6. Kotropoulos, C., Pittas, I.: Segmentations of Ultrasonic Images Using Support Vector Machines. Pat. Rec. Let. 24, 715–727 (2003)

    Article  MATH  Google Scholar 

  7. Boukerroui, D., Basset, O., Guerin, N., Baskurt, A.: Multiresolution Texture Based Adaptive Clustering Algorithm for Breast Lesion Segmentation. Eur. J. Ultr. 8, 135–144 (1998)

    Article  Google Scholar 

  8. Fan, L., Braden, G.A., Herrington, D.M.: Nonlinear Wavelet Filter for Intracoronary Ultrasound Images. In: Proc. An Meet. Comp. Card, pp. 41–44 (1996)

    Google Scholar 

  9. Thomas, J.G., Peters, R.A., Jeanty, P.: Automatic Segmentation of Ultrasound Images Using Morphological Operators. IEEE Trans. Med. Im. 10, 180–186 (1991)

    Article  Google Scholar 

  10. Heckman, T.: Searching for Contours. Proc. SPIE 2666, 223–232 (1996)

    Article  Google Scholar 

  11. Solaiman, B., Roux, C., Rangayyan, R.M., Pipelier, F., Hillion, A.: Fuzzy Edge Evaluation in Ultrasound Endosonographic Images. In: Proc. Can. Conf. Elec. Comp. Eng. pp. 335–338 (1996)

    Google Scholar 

  12. McInerney, T., Terzopoulos, D.: Deformable Models in Medical Image Analysis: A Survey. Med. Im. Anal. 1(2), 91–108 (1996)

    Article  Google Scholar 

  13. Honggang, Y., Pattichis, M.S., Goens, M.B.: Robust Segmentation of Freehand Ultrasound Image Slices Using Gradient Vector Flow Fast Geometric Active Contours. In: Proc. IEEE South Symp. Im. Anal. Interpr., pp. 115–119. IEEE, Los Alamitos (2006)

    Chapter  Google Scholar 

  14. Liu, W., Zagzebski, J.A., Varghese, T., Dyer, C.R., Techavipoo, U., Hall, T.J.: Segmentation of Elastographic Images Using a Coarse-to-Fine Active Contour Model. Ultr. Med. Biol. 32(3), 397–408 (2006)

    Article  Google Scholar 

  15. Cardinal, M.-H.R., Meunier, J., Soulez, G., Maurice, R.L., Therasse, E., Cloutier, G.: Intravascular Ultrasound Image Segmentation: a Three-Dimensional Fast-Marching Method Based on Gray Level Distributions. IEEE Trans. Med. Im. 25(5), 590–601 (2006)

    Article  Google Scholar 

  16. Mumford, D., Shah, J.: Optimal Approximation by Piecewise Smooth Functions and Associated Variational Problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MATH  Google Scholar 

  17. Chan, T.F., Vese, L.A.: Active Contours Without Edges. IEEE Trans. Im. Proc. 7, 266–277 (2001)

    Article  Google Scholar 

  18. Osher, S., Sethian, J.: Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on the Hamilton-Jacobi Formulations. J. Comp. Phys. 79, 12–49 (1988)

    Article  MATH  Google Scholar 

  19. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA (1989)

    MATH  Google Scholar 

  20. Grefenstette, J.J.: Optimization of Control Parameters for Genetic Algorithms. IEEE Trans. Syst. Man. Cyber. 16(1), 122–128 (1986)

    Article  Google Scholar 

  21. Min, S.H., Lee, J., Han, I.: Hybrid Genetic Algorithms and Support Vector Machines for Bankruptcy Prediction. Expert Systems with Applications 31(3), 652–660 (2006)

    Article  Google Scholar 

  22. Zhao, X.M., Cheung, Y.M., Huang, D.S.: A Novel Approach to Extracting Features from Motif Content and Protein Composition for Protein Sequence Classification. Neural Networks 18, 1019–1028 (2005)

    Article  Google Scholar 

  23. Plagianakos, V.P., Magoulas, G.D., Vrahatis, M.N.: Tumor Detection in Colonoscopic Images Using Hybrid Methods for On-Line Neural Network Training. In: Proc. Int. Conf. Neur. Net. Exp. Syst. Med. Health, pp. 59–64 (2001)

    Google Scholar 

  24. Pignalberi, G., Cucchiara, R., Cinque, L., Levialdi, S.: Tuning Range Segmentation by Genetic Algorithm. EURASIP J. Appl. Sig. Proc. 8, 780–790 (2003)

    Article  Google Scholar 

  25. Kaus, M.R., Warfield, S.K., Jolesz, F.A., Kikinis, R.: Segmentation of Meningiomas and Low Grade Gliomas in MRI. In: Proc. Int. Conf. Med. Im. Comp. Comp-Ass. Interv., pp. 1–10 (1999)

    Google Scholar 

  26. Syswerda, G.: A Study of Reproduction in Generational and Steady State Genetic Algorithms: Foundations of Genetic Algorithms, Rawlings G.J.E., pp. 94–101. Morgan Kaufmann, San Mateo (1999)

    Google Scholar 

  27. Eiben, A.E.: Multiparent Recombination in Evolutionary Computing, Advances in Evolutionary Computing. Natural Computing Series, pp. 175–192. Springer, Heidelberg (2002)

    Google Scholar 

  28. Bäck, T.: Optimal Mutation Rates in Genetic Search. In: Proc. Int. Conf. Gen. Alg., pp. 2–8 (1993)

    Google Scholar 

  29. Goldberg, D.E.: Sizing Population for Serial and Parallel Genetic Algorithms. In: Proc. Int. Conf. Gen. Alg., pp. 70–79 (1989)

    Google Scholar 

  30. Bäck, T., Hammel, U., Schwefel, H.P.: Evolutionary Computation: Comments on the History and Current State. IEEE Trans. Evol. Comp. 1(1), 3–17 (1997)

    Article  Google Scholar 

  31. Kemenade K.M., van Eiben, A.E.: Multi-Parent Recombination to Overcome Premature Convergence in Genetic Algorithms. In: Proc. Dutch Conf. Art. Intell., pp. 137–146 (1995)

    Google Scholar 

  32. Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press, London (1998)

    MATH  Google Scholar 

  33. Woltjer, H.H.: The Intra- and Interobserver Variability of Impedance Cardiography in Patients at Rest During Exercise. Physiol. Meas. 17, 171–178 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Blanc-Talon Wilfried Philips Dan Popescu Paul Scheunders

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iakovidis, D.K., Savelonas, M.A., Maroulis, D. (2007). Adaptive Vision System for Segmentation of Echographic Medical Images Based on a Modified Mumford-Shah Functional. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2007. Lecture Notes in Computer Science, vol 4678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74607-2_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74607-2_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74606-5

  • Online ISBN: 978-3-540-74607-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics