Abstract
Dynamic multi-objective TSP (DMOTSP), a new research filed of evolutionary computation, is an NP-hard problem which comes from the applications of mobile computing, mobile communications. Currently, only a small number of literatures related to the research of static multi-objective TSP and dynamic single objective TSP. In this paper, an evaluation criterion of the algorithms for DMOTSP called Paretos-Similarity is first proposed, with which can evaluate the Pareto set and algorithms’ performance for DMOTSP. A dynamic multi-objective evolutionary algorithm for DMOTSP, DMOTSP-EA, is also proposed, which embraces an effective operator, Inver-Over, for static TSP and dynamic elastic operators for dynamic TSP. It can track the Pareto front of medium-scale dynamic multi-objective TSP in which the number of cities is between 100 and 200. In experiment, taking CHN144+5 with two objectives for example, the algorithm is tested effective and the evaluation criterion, Paretos-Similarity, is available.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Psaraftis, H.N.: Dynamic vehicle routing problems. In: Golden, B.L., Assad, A.A. (eds.) Vehicle Routing: Methods and Studies, pp. 223–248. Elsevier Science Publishers, Amsterdam (1988)
Durbin, R., Willshaw, D.: An Analogue Approach to the Traveling Salesman Problem Using an Elastic Net Method. Nature 326(6114), 689–691 (1987)
Stone, J.V.: The Optimal Elastic Net: Finding Solutions for the Travelling Salesman. Artificial Neural Networks 2, 1077–1080 (1992)
Power, W., Jaillet, P., Odoni, A.: Stochastic and Dynamic Networks and Routing. In: Ball, M., Maganti, T., Monma, C., Namhauser, G. (eds.) Network Rougting, North-Holland, Amsterdam (1995)
Guntsch, M., Branke, J., Middendorf, M., Schmeck, H.: ACO Strategies for Dynamic TSP. In: Dorrigo, M., et al. (eds.) Abstract Proceedings of ANTS 2000, pp. 59–62 (2000)
Huang, Z.C., Hu, X.L., Chen, S.D.: Dynamic Traveling Salesman Problem based on Evolutionay Compution. In: CEC 2001. Congress on Evolution Compution, pp. 1283–1288. IEEE Computer Society Press, Los Alamitos (2001)
Eyckelhof, C.J., Snoek, M.: Ant Systems for a Dynamic TSP-Ants caught in a traffic jam. In: ANTS 2002. 3rd International Workshop on Ant Algorithms, pp. 88–99. Springer, Brussels, Belgium (2002)
Ausiello, G., Feuestein, E., Leonardi, S., Stougie, L., Talamo, M.: Algorithms for the On-line Traveling Salesman. Algorithmica 29(4), 560–581 (2001)
Kang, L., Zhou, A., McKay, B., et al.: Benchmarking Algorithms for Dynamic Travelling Salesman Problems. In: Proceedings of the Congress on Evolutionary Computation, Portland, Oregon (2004)
Li, C., Yang, M., Kang, L.: A New Approach to Solving Dynamic Traveling Salesman Problems. In: Wang, T.-D., Li, X., Chen, S.-H., Wang, X., Abbass, H., Iba, H., Chen, G., Yao, X. (eds.) SEAL 2006. LNCS, vol. 4247, pp. 236–243. Springer, Heidelberg (2006)
Guo, T., Michalewicz, Z.: Inver-Over operator for the TSP. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN V. LNCS, vol. 1498, pp. 803–812. Springer, Heidelberg (1998)
Helsgaun, K.: An Effective Implementation of the Lin-Kernighan Traveling Salesman Heuristic. Eur. J. Oper. Res. 126, 106–130 (2000)
Rudolph, G.: On a Multi-objective Evolutionary Algorithm and Its Convergence to the Pareto Set. In: Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pp. 511–516. IEEE Press, Piscataway (NJ) (1998)
Deb, K.: A Fast and Elitist Multi-objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)
Yan, Z.Y., Zhang, L.H., Kang, L.S.: A New MOEA for Multi-objective TSP and Its Convergence Property Analysis. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 342–354. Springer, Heidelberg (2003)
Pareto, V.: Cours D’ Economie Politique, vol. 1. F. Rouge, Lausanne (1896)
Ji, Z., Chen, A., Subprasom, K.: Finding Multi-Objective Paths in Stochastic Networks: A Simulation-based Genetic Algorithm Approach. In: CEC 2004. Congress on Evolution Compution, pp. 174–180. IEEE Press, NJ, New York (2004)
Marwaha, S., Srinivasan, D., Tham, C.K., et al.: Evolutionary Fuzzy Multi-Objective Routing For Wireless Mobile Ad Hoc Networks. In: CEC 2004. Congress on Evolution Compution, pp. 1964–1971. IEEE Press, NJ, New York (2004)
Han, J., Kamber, M.: Data Mining Concepts and Techniques, pp. 223–225. China Machine Press, Beijing (2005)
Xie, J., Liu, C.: Fuzzy Mathematics and Its Applications (2nd edn.). Huzhong University of Science and Technology Publication, pp. 81–118 (Ch) (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
YangP, M., KangP, L., GuanP, J. (2007). An Evolutionary Algorithm for Dynamic Multi-Objective TSP. In: Kang, L., Liu, Y., Zeng, S. (eds) Advances in Computation and Intelligence. ISICA 2007. Lecture Notes in Computer Science, vol 4683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74581-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-74581-5_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74580-8
Online ISBN: 978-3-540-74581-5
eBook Packages: Computer ScienceComputer Science (R0)