Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Evolutionary Algorithm for Dynamic Multi-Objective TSP

  • Conference paper
Advances in Computation and Intelligence (ISICA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4683))

Included in the following conference series:

  • 1518 Accesses

Abstract

Dynamic multi-objective TSP (DMOTSP), a new research filed of evolutionary computation, is an NP-hard problem which comes from the applications of mobile computing, mobile communications. Currently, only a small number of literatures related to the research of static multi-objective TSP and dynamic single objective TSP. In this paper, an evaluation criterion of the algorithms for DMOTSP called Paretos-Similarity is first proposed, with which can evaluate the Pareto set and algorithms’ performance for DMOTSP. A dynamic multi-objective evolutionary algorithm for DMOTSP, DMOTSP-EA, is also proposed, which embraces an effective operator, Inver-Over, for static TSP and dynamic elastic operators for dynamic TSP. It can track the Pareto front of medium-scale dynamic multi-objective TSP in which the number of cities is between 100 and 200. In experiment, taking CHN144+5 with two objectives for example, the algorithm is tested effective and the evaluation criterion, Paretos-Similarity, is available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Psaraftis, H.N.: Dynamic vehicle routing problems. In: Golden, B.L., Assad, A.A. (eds.) Vehicle Routing: Methods and Studies, pp. 223–248. Elsevier Science Publishers, Amsterdam (1988)

    Google Scholar 

  2. Durbin, R., Willshaw, D.: An Analogue Approach to the Traveling Salesman Problem Using an Elastic Net Method. Nature 326(6114), 689–691 (1987)

    Article  Google Scholar 

  3. Stone, J.V.: The Optimal Elastic Net: Finding Solutions for the Travelling Salesman. Artificial Neural Networks 2, 1077–1080 (1992)

    Google Scholar 

  4. Power, W., Jaillet, P., Odoni, A.: Stochastic and Dynamic Networks and Routing. In: Ball, M., Maganti, T., Monma, C., Namhauser, G. (eds.) Network Rougting, North-Holland, Amsterdam (1995)

    Google Scholar 

  5. Guntsch, M., Branke, J., Middendorf, M., Schmeck, H.: ACO Strategies for Dynamic TSP. In: Dorrigo, M., et al. (eds.) Abstract Proceedings of ANTS 2000, pp. 59–62 (2000)

    Google Scholar 

  6. Huang, Z.C., Hu, X.L., Chen, S.D.: Dynamic Traveling Salesman Problem based on Evolutionay Compution. In: CEC 2001. Congress on Evolution Compution, pp. 1283–1288. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  7. Eyckelhof, C.J., Snoek, M.: Ant Systems for a Dynamic TSP-Ants caught in a traffic jam. In: ANTS 2002. 3rd International Workshop on Ant Algorithms, pp. 88–99. Springer, Brussels, Belgium (2002)

    Google Scholar 

  8. Ausiello, G., Feuestein, E., Leonardi, S., Stougie, L., Talamo, M.: Algorithms for the On-line Traveling Salesman. Algorithmica 29(4), 560–581 (2001)

    Article  MATH  Google Scholar 

  9. Kang, L., Zhou, A., McKay, B., et al.: Benchmarking Algorithms for Dynamic Travelling Salesman Problems. In: Proceedings of the Congress on Evolutionary Computation, Portland, Oregon (2004)

    Google Scholar 

  10. Li, C., Yang, M., Kang, L.: A New Approach to Solving Dynamic Traveling Salesman Problems. In: Wang, T.-D., Li, X., Chen, S.-H., Wang, X., Abbass, H., Iba, H., Chen, G., Yao, X. (eds.) SEAL 2006. LNCS, vol. 4247, pp. 236–243. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Guo, T., Michalewicz, Z.: Inver-Over operator for the TSP. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN V. LNCS, vol. 1498, pp. 803–812. Springer, Heidelberg (1998)

    Google Scholar 

  12. Helsgaun, K.: An Effective Implementation of the Lin-Kernighan Traveling Salesman Heuristic. Eur. J. Oper. Res. 126, 106–130 (2000)

    Article  MATH  Google Scholar 

  13. Rudolph, G.: On a Multi-objective Evolutionary Algorithm and Its Convergence to the Pareto Set. In: Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pp. 511–516. IEEE Press, Piscataway (NJ) (1998)

    Chapter  Google Scholar 

  14. Deb, K.: A Fast and Elitist Multi-objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  15. Yan, Z.Y., Zhang, L.H., Kang, L.S.: A New MOEA for Multi-objective TSP and Its Convergence Property Analysis. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 342–354. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Pareto, V.: Cours D’ Economie Politique, vol. 1. F. Rouge, Lausanne (1896)

    Google Scholar 

  17. Ji, Z., Chen, A., Subprasom, K.: Finding Multi-Objective Paths in Stochastic Networks: A Simulation-based Genetic Algorithm Approach. In: CEC 2004. Congress on Evolution Compution, pp. 174–180. IEEE Press, NJ, New York (2004)

    Google Scholar 

  18. Marwaha, S., Srinivasan, D., Tham, C.K., et al.: Evolutionary Fuzzy Multi-Objective Routing For Wireless Mobile Ad Hoc Networks. In: CEC 2004. Congress on Evolution Compution, pp. 1964–1971. IEEE Press, NJ, New York (2004)

    Google Scholar 

  19. Han, J., Kamber, M.: Data Mining Concepts and Techniques, pp. 223–225. China Machine Press, Beijing (2005)

    Google Scholar 

  20. Xie, J., Liu, C.: Fuzzy Mathematics and Its Applications (2nd edn.). Huzhong University of Science and Technology Publication, pp. 81–118 (Ch) (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lishan Kang Yong Liu Sanyou Zeng

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

YangP, M., KangP, L., GuanP, J. (2007). An Evolutionary Algorithm for Dynamic Multi-Objective TSP. In: Kang, L., Liu, Y., Zeng, S. (eds) Advances in Computation and Intelligence. ISICA 2007. Lecture Notes in Computer Science, vol 4683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74581-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74581-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74580-8

  • Online ISBN: 978-3-540-74581-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics