Nothing Special   »   [go: up one dir, main page]

Skip to main content

Effective Quantification of Gene Expression Levels in Microarray Images Using a Spot-Adaptive Compound Clustering-Enhancement-Segmentation Scheme

  • Conference paper
Computational Science and Its Applications – ICCSA 2007 (ICCSA 2007)

Abstract

A spot-adaptive compound clustering-enhancement-segmentation (CES) scheme was developed for the quantification of gene expression levels in microarray images. The CES-scheme employed 1/griding, for locating spot-regions, 2/Fuzzy C-means clustering, for segmenting spots from background, 3/ background noise estimation and spot’s center localization, 4/emphasizing of spot’s outline by the CLAHE image enhancement technique, 5/segmentation by the SRG algorithm, using information from step 3, and 6/microarray spot intensity extraction. Extracted intensities by the CES-Scheme were compared against those obtained by the MAGIC TOOL’s SRG. Kullback-Liebler metric’s values for the CES-Scheme were on average double than MAGIC TOOL’s, with differences ranging from 1.45bits to 2.77bits in 7 cDNA images. Coefficient-of-Variation results showed significantly higher reproducibility (p<0.001) for the CES-Scheme in quantifying gene expression levels. Processing times for 1024x1024 16-bit microarray images containing 6400 spots were 300 and 487 seconds for the CES-Scheme and MAGIC TOOL respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alizadeh, A., Eisen, M., Botstein, D., Brown, P.O., Staudt, L.M.: Probing lymphocyte biology by genomic-scale gene expression analysis. J. Clin. Immunol. 18, 373–379 (1998)

    Article  Google Scholar 

  2. Churchill, G.A.: Fundamentals of experimental design for cdna microarrays. Nat Genet. 32, 490–495 (2002)

    Article  Google Scholar 

  3. Taniguchi, M., Miura, K., Iwao, H., Yamanaka, S.: Quantitative assessment of DNA microarrays–comparison with northern blot analyses. Genomics 71, 34–39 (2001)

    Article  Google Scholar 

  4. Schena, M.: Microarray biochip technology, 1st edn. Eaton Publishing Company (2000)

    Google Scholar 

  5. Chen, Y., Dougherty, E., Bittner, M.: Ratio-based decisions and the quantitative analysis of cdna microarray images. Journal of Biomedical Optics 2, 364–374 (1997)

    Article  Google Scholar 

  6. Schena, M.: Microarray analysis, 1st edn. New York (2002)

    Google Scholar 

  7. Jain, A.N., Tokuyasu, T.A., Snijders, A.M., Segraves, R., Albertson, D.G., Pinkel, D.: Fully automatic quantification of microarray image data. Genome Res. 12, 325–332 (2002)

    Article  Google Scholar 

  8. Yang, Y.H., Buckley, M.J., Speed, T.P.: Analysis of cdna microarray images. Brief Bioinform. 2, 341–349 (2001)

    Article  Google Scholar 

  9. Schuchhardt, J., Beule, D., Malik, A., Wolski, E., Eickhoff, H., Lehrach, H., Herzel, H.: Normalization strategies for cdna microarrays. Nucleic Acids Res. 28, 47 (2000)

    Article  Google Scholar 

  10. Balagurunathan, Y., Wang, N., Dougherty, E.R., Nguyen, D., Chen, Y., Bittner, M.L., Trent, J., Carroll, R.: Noise factor analysis for cdna microarrays. J. Biomed. Opt. 9, 663–678 (2004)

    Article  Google Scholar 

  11. Balagurunathan, Y., Dougherty, E.R., Chen, Y., Bittner, M.L., Trent, J.M.: Simulation of cdna microarrays via a parameterized random signal model. J. Biomed. Opt. 7, 507–523 (2002)

    Article  Google Scholar 

  12. Ahmed, A.A., Vias, M., Iyer, N.G., Caldas, C., Brenton, J.D.: Microarray segmentation methods significantly influence data precision. Nucleic Acids Res. 32, e50 (2004)

    Article  Google Scholar 

  13. Gonzalez, R.C., Woods, R.E.: Digital image processing, 1st edn (1992)

    Google Scholar 

  14. Axon Instruments. Genepix4000a user’s guide (1999)

    Google Scholar 

  15. Steinfath, M., Wruck, W., Seidel, H., Lehrach, H., Radelof, U., O’Brien, J.: Automated image analysis for array hybridization experiments. Bioinformatics 17, 634–641 (2001)

    Article  Google Scholar 

  16. White, A.M., Daly, D.S., Willse, A.R., Protic, M., Chandler, D.P.: Automated microarray image analysis toolbox for matlab. Bioinformatics 21, 3578–3579 (2005)

    Article  Google Scholar 

  17. Zapala, M.A., Lockhart, D.J., Pankratz, D.G., Garcia, A.J., Barlow, C., Lockhart, D.J.: Software and methods for oligonucleotide and cdna array data analysis. Genome Biol. 3, 1 (2002)

    Article  Google Scholar 

  18. QuantArray Analysis Software, O.s.M. Available: via the INTERNET. Accessed

    Google Scholar 

  19. Eisen, M.B.S.: (Accessed 06/12/2006) via the INTERNET, Available: http://rana.stanford.edu/software

  20. Wang, X.H., Istepanian, R.S., Song, Y.H.: Microarray image enhancement by denoising using stationary wavelet transform. IEEE Trans Nanobioscience 2, 184–189 (2003)

    Article  Google Scholar 

  21. Lukac, R., Plataniotis, K.N., Smolka, B., Venetsanopoulos, A.N.: Cdna microarray image processing using fuzzy vector filtering framework. Journal of Fuzzy Sets and Systems: Special Issue on Fuzzy Sets and Systems in Bioinformatics (2005)

    Google Scholar 

  22. Mastriani, M., Giraldez, A.E.: Microarrays denoising via smoothing of coefficients in wavelet domain. International Journal of Biomedical Sciences 1, 1306–1316 (2006)

    Google Scholar 

  23. Lukac, R., Smolka, B.: Application of the adaptive center-weighted vector median framework for the enhancement of cdna microarray. Int. J. Appl. Math. Comput. Sci. 13, 369–383 (2003)

    MATH  Google Scholar 

  24. Daskalakis, A., Cavouras, D., Bougioukos, P., Kostopoulos, S., Argyropoulos, C., Nikiforidis, G.C.: Improving microarray spots segmentation by k-means driven adaptive image restoration. In: Proceedings of the ITAB Ioannina, Greece (2006)

    Google Scholar 

  25. Jain, A.K.: Fundamentals of digital image processing. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  26. Adams, R., Bischof, L.: Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 641–647 (1994)

    Article  Google Scholar 

  27. Kullback, S.: Information theory and statistics, 2nd edn. Dover Publications, Mineola (1968)

    Google Scholar 

  28. Heyer, L.J., Moskowitz, D.Z., Abele, J.A., Karnik, P., Choi, D., Campbell, A.M., Oldham, E.E., Akin, B.K.: Magic tool: Integrated microarray data analysis. Bioinformatics 21, 2114–2115 (2005)

    Article  Google Scholar 

  29. (Accessed 06/12/2006) Available: via the INTERNET, http://www.bio.davidson.edu/projects/MAGIC/MAGIC.html

  30. DeRisi, J.L., Iyer, V.R., Brown, P.O.: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997)

    Article  Google Scholar 

  31. Sterrenburg, E., Turk, R., Boer, J.M., van Ommen, G.B., den Dunnen, J.T.: A common reference for cdna microarray hybridizations. Nucleic Acids Res. 30, e116 (2002)

    Article  Google Scholar 

  32. Yang, Y.H., Speed, T.: Design issues for cdna microarray experiments. Nat. Rev. Genet. 3, 579–588 (2002)

    Google Scholar 

  33. Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 829–836 (1979)

    Google Scholar 

  34. Pizer, S.M., Amburn, E.P.: Adaptive histogram equalization and its variations. Grpahics, and Image Processing 39, 355–368 (1987)

    Google Scholar 

  35. Bowman, A.W., Azzalini, A.: Applied smoothing techniques for data analysis. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  36. Nykter, M., Aho, T., Ahdesmaki, M., Ruusuvuori, P., Lehmussola, A., Yli-Harja, O.: Simulation of microarray data with realistic characteristics. BMC Bioinformatics 7, 349 (2006)

    Article  Google Scholar 

  37. Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 97, 77 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Daskalakis, A. et al. (2007). Effective Quantification of Gene Expression Levels in Microarray Images Using a Spot-Adaptive Compound Clustering-Enhancement-Segmentation Scheme. In: Gervasi, O., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2007. ICCSA 2007. Lecture Notes in Computer Science, vol 4707. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74484-9_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74484-9_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74482-5

  • Online ISBN: 978-3-540-74484-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics