Nothing Special   »   [go: up one dir, main page]

Skip to main content

Non-classical Logic in an Intelligent Assessment Sub-system

  • Conference paper
Computational Science and Its Applications – ICCSA 2007 (ICCSA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4705))

Included in the following conference series:

Abstract

Decision support systems (DSS) are in the center of today’s experts’ attention, due to their abilities to allow significant increase of the quality of optimal decision selection among a large number of alternatives. In this paper we discuss assessment criteria of delivery quality in the transport logistics applaying methods from non-classical logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of ACM SIGMOD international conference on management of data, Washington, DC, USA, pp. 207–216. ACM Press, New York (1993)

    Google Scholar 

  2. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Uthurusamy, F., Piatetsky-Shapiro, G., Smyth, P. (eds.) Advances in Knowledge discovery of association rules, pp. 307–328. MIT Press, Cambridge (1996)

    Google Scholar 

  3. Agrawal, R., Srikant, R.: Fast algorithm for mining association rules. In: Proceedings of the 20th very large data base conference, Santiago, Chile, pp. 487–489 (1994)

    Google Scholar 

  4. Arnott, D., Pervan, G.G.: A critical analysis of decision support systems research. Journal of Information Technology 20(2), 67–87 (2005)

    Article  Google Scholar 

  5. Baskerville, R., Myers, M.: Information Systems as a Reference Discipline. MIS Quarterly 26(1), 1–14 (2002)

    Google Scholar 

  6. Bastide, T., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining frequent patterns with counting inference. SIGKDD explorations, Special issue on scalable algorithms 2(2), 71–80 (2000)

    Google Scholar 

  7. Belnap, N.J.: A useful four valued logic. In: Dunn, J.M., Epstain, G. (eds.) Modern uses of multiple-valued logic, pp. 8–37. D. Reidel Publishing Co., Dordrecht (1977)

    Google Scholar 

  8. Brin, S., Motwani, R., Ullmann, J.D., Tsur, S.: Dynamic itemset counting and implication rules for market basket data. In: Proceedings of the ACM SIGKDD international conference on management of data, Tuscon, AZ, USA, pp. 255–264 (1997)

    Google Scholar 

  9. Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Applications. John Wiley and Sons, Ltd., Chichester (2004)

    MATH  Google Scholar 

  10. Davey, B.A., Priestley, H.A.: Introduction to lattices and order. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  11. Delgado, M., Sanchez, D., Martin-Bautista, M.J., Vila, M.A.: Mining association rules with improved semantics in medical databases. Artificial Intelligence in Medicine 21(1-3) (2001)

    Google Scholar 

  12. Felix, P., Fraga, S., Marin, R., Barro, S.: Linguistic representation of fuzzy temporal profiles. International Journal of Uncertainty, Fuzziness and Know ledge Based Systems 7(3), 243–257 (1999)

    Article  MATH  Google Scholar 

  13. Fitting, M.: Kleene’s Logic, Generalized. Journal of Logic and Computation 1(6), 797–810 (1991)

    Article  MATH  Google Scholar 

  14. Ganter, B., Stumme, G., Wille, R.: Formal Concept Analysis. LNCS (LNAI), vol. 3626. Springer, Heidelberg (2005)

    Google Scholar 

  15. Garcia, O.N., Moussavi, M.: A Six-Valued Logic for Representing Incomplete Knowledge. In: ISMVL. Proc. of the 20th International Symposium on Multiple-Valued Logic, Charlotte, NC, USA, May 1990, pp. 110–114. IEEE Computer Society Press, Los Alamitos (1990)

    Google Scholar 

  16. Gurfinkel, A., Chechik, M.: Yasm: Model-Checking Software with Belnap Logic. Technical Report 470, University of Toronto (April 2005)

    Google Scholar 

  17. Malerba, D., Lisi, F.A., Appice, A., Sblendorio, F.: Mining spatial association rules in census data: a relational approach. In: Proceedings of the ECML/PKDD’02 workshop on mining official data, University Printing House, Helsinki, pp. 80–93 (2002)

    Google Scholar 

  18. Merceron, A., Yacef, K.: A Web-based Tutoring Tool with Mining Facilities to Improve Learning and Teaching. In: Verdejo, F., Hoppe, U. (eds.) Proceedings of 11th International Conference on Artificial Intelligence in Education, Sydney, IOS Press, Amsterdam (2003)

    Google Scholar 

  19. Moussavi, M., Garcia, N.: A Six-Valued Logic and its application to artificial intelligence. In: Proc. of the Fift Southeastern Logic Symposium, UNC-Charlotte, NC, USA, IEEE Computer Society Press, Los Alamitos (1989)

    Google Scholar 

  20. Mulsliner, D.J., Durfee, E.H., Shin, K.G.: CIRCA: A cooperative intelligent real-time control architecture. Trans. on Systems, Man and Cybernetics 23(6), 1561–1574 (1993)

    Article  Google Scholar 

  21. Pasquier, N., Bastide, T., Taouil, R., Lakhal, L.: Efficient mining of association rules using closed itemset lattices. Journal of Information Systems 24(1), 25–46 (1999)

    Article  Google Scholar 

  22. Pecheanu, E., Segal, C., Stefanescu, D.: Content modeling in Intelligent Instructional Environment. LNCS (LNAI), vol. 3190, pp. 1229–1234. Springer, Heidelberg (2003)

    Google Scholar 

  23. Sakama, C.: Ordering default theories. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 839–844. Morgan Kaufmann, Los Altos, CA (2003)

    Google Scholar 

  24. Sakama, C.: Ordering default theories and nonmonotonic logic programs. Theoretical Computer Science 338(1-3), 127–152 (2005)

    Article  MATH  Google Scholar 

  25. Tafertshofer, P., Granz, A., Antreich, K.J.: Igraine-an implication GRaph-bAsed engINE for fast implication, justification and propagation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 19(8), 907–927 (2000)

    Article  Google Scholar 

  26. Wagner, G. (ed.): Vivid Logic. LNCS, vol. 764. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  27. Wille, R.: Concept lattices and conceptual knowledge systems. Computers Math. Applic. 23(6-9), 493–515 (1992)

    Article  MATH  Google Scholar 

  28. Zaki, M.J.: Generating non-redundant association rules. In: Proceedings of the 6th ACM SIGKDD international conference on knowledge discovery and data mining, Boston, USA, pp. 34–43. ACM Press, New York (2000)

    Chapter  Google Scholar 

  29. Zaki, M.J., Hsiao, C.-J.: CHARM: An efficient algorithm for closed itemset mining. In: Proceedings of the 2nd SIAM international conference on data mining, Arlington, VA, USA, pp. 34–43 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Encheva, S., Kondratenko, Y., Tumin, S., Sanjay, K.K. (2007). Non-classical Logic in an Intelligent Assessment Sub-system. In: Gervasi, O., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2007. ICCSA 2007. Lecture Notes in Computer Science, vol 4705. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74472-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74472-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74468-9

  • Online ISBN: 978-3-540-74472-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics