Nothing Special   »   [go: up one dir, main page]

Skip to main content

Related Terms Clustering for Enhancing the Comprehensibility of Web Search Results

  • Conference paper
Database and Expert Systems Applications (DEXA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4653))

Included in the following conference series:

  • 1226 Accesses

Abstract

Search results clustering is useful for clarifying vague queries and in managing the sheer volume of web pages. But these clusters are often incomprehensible to users. In this paper, we propose a new method for producing intuitive clusters that greatly aid in finding desired web search results. By using terms that are both frequently used in queries and found together on web pages to build clusters our method combines the better features of both “computer-oriented clustering” and “human-oriented clustering”. Our evaluation experiments show that this method provides the user with appropriate clusters and clear labels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baeza-Yates, R.A., Hurtado, C.A., Mendoza, M.: Query Recommendation Using Query Logs in Search Engines. In: Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 588–596. Springer, Heidelberg (2004)

    Google Scholar 

  2. Zhang, Z., Nasraoui, O.: Mining search engine query logs for query recommendation. In: WWW 2006, pp. 1039–1040 (2006)

    Google Scholar 

  3. Zamir, O., Etzioni, O.: Web Document Clustering: A Feasibility Demonstration. In: SIGIR 1998, pp. 46–54 (1998)

    Google Scholar 

  4. Kohonen, T.: Self-Organizing Maps of Massive Document Collections. In: IJCNN 2000, vol. 2, pp. 3–12 (2000)

    Google Scholar 

  5. Osinski, S.: Improving Quality of Search Results Clustering with Approximate Matrix Factorisations. In: ECIR 2006, pp. 167–178 (2006)

    Google Scholar 

  6. Beeferman, D., Berger, A.L.: Agglomerative clustering of a search engine query log. In: KDD 2000, pp. 407–416 (2000)

    Google Scholar 

  7. Wen, J.R., Nie, J.Y., Zhang, H.J.: Query clustering using user logs. ACM Trans. Inf. Syst. 20(1), 59–81 (2002)

    Article  Google Scholar 

  8. Iwayama, M., Tokunaga, T.: Hierarchical Bayesian Clustering for Automatic Text Classification. In: IJCAI 1995, pp. 1322–1327 (1995)

    Google Scholar 

  9. Tokunaga, T., Iwayama, M., Tanaka, H.: Automatic Thesaurus Construction based on Grammatical Relations. In: IJCAI 1995, pp. 1308-1313 (1995)

    Google Scholar 

  10. Schutze, H., Pedersen, J.: A Cooccurrence-Based Thesaurus and Two Applications to Information Retrieval. Inf. Process. Manage. 33(3), 307–318 (1997)

    Article  Google Scholar 

  11. Manning, C.D., Schutze, H.: Foundations of Statistical Natural Language Processing. Mit. Pr. (1999)

    Google Scholar 

  12. Kaki, M.: Optimizing the number of search result categories. In: CHI 2005, pp. 1517–1520 (2005)

    Google Scholar 

  13. Stemmer, P.: http://tartarus.org/~martin/PorterStemmer/index.html

  14. Eguchi, K., Oyama, K., Ishida, E., Kando, N., Kuriyama, K.: NTCIR-3 WEB: An Evaluation Workshop for Web Retrieval. NII Journal 6, 31–56 (2003)

    Google Scholar 

  15. Yasukawa, M., Yokoo, H.: Web Search Based on Clustering of Related Terms Acquired from Search Log (Japanese). IEICE Trans. Inf. Syst. J90-D(2), 269–280 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roland Wagner Norman Revell Günther Pernul

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yasukawa, M., Yokoo, H. (2007). Related Terms Clustering for Enhancing the Comprehensibility of Web Search Results. In: Wagner, R., Revell, N., Pernul, G. (eds) Database and Expert Systems Applications. DEXA 2007. Lecture Notes in Computer Science, vol 4653. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74469-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74469-6_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74467-2

  • Online ISBN: 978-3-540-74469-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics