Abstract
To reduce power consumption in electronic designs, new techniques for circuit design must always be considered. Float ing-gate MOS (FGMOS) is one of those techniques and has previously shown poten tially better performance than standard static CMOS circuits for ultra-low power designs. One reason for this is because FGMOS only requires a few transis tors per gate and still retain a large fan-in. Another reason is that CMOS circuits becomes very slow in subthreshold region and are not suitable in many applications while FGMOS can have a shift in threshold voltage to increase speed performance. This paper investigates how the performance of an FGMOS full-adder circuit will compare with two common CMOS full-adder designs. Simulations in a 120 nm process shows that FGMOS can have up to 9 times better EDP performance at 250 mV. The simulations also show that the FGMOS full-adder is 32 times faster and have two orders of magnitude higher power consumption than that for CMOS.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Shibata, T., Ohmni, T.: A Functional MOS Transistor Featuring Gate-Level Weighted Sum and Threshold Operations. IEEE Transactions on Electron Devices 39 (1992)
Alfredsson, J., Aunet, S., Oelmann, B.: Basic speed and power properties of digital floating-gate circuits operating in subthreshold. In: IFIP VLSI-SOC 2005, Proc. of IFIP International Conference on Very Large Scale Integration, October 2005, Australia (2005)
Hasler, P., Lande, T.S.: Overview of floating-gate devices, circuits and systems. IEEE Transactions on Circuits and Systems - II: Analog and Digital Signal Processing 48(1) (January 2001)
Stan, M.R.: Low-power CMOS with subvolt supply voltages. IEEE Transactions on VLSI Systems 9(2) (April 2001)
Rodríguez-Villegas, E., Huertas, G., Avedillo, M.J., Quintana, J.M., Rueda, A.: A Practical Floating-Gate Muller-C Element Using vMOS Thershold Gates. IEEE Transactions on Cirucits and Systems-II: Analog and Digital Signal Processing 48(1) (January 2001)
Aunet, S., Berg, Y., Ytterdal, T., Næss, Ø., Sæther, T.: A method for simulation of floating-gate UV-programmable circuits with application to three new 2-MOSFET digital circuits. In: The 8th IEEE International conference on Electronics, Circuits and Systems, 2001, vol. 2, pp. 1035–1038 (2001)
Rahimi, K., Diorio, C., Hernandez, C., Brockhausen, M.D.: A simulation model for floating-gate MOS synapse transistors. In: ISCAS 2002, Proc. of the 2002 IEEE International Sympposium on Circuits and Systems, May 2002, vol. 2, pp. 532–535 (2002)
Ramírez-Angulo, J., López-Martín, A.J., González Carvajal, R., Muñoz Chavero, F.: Very low-voltage analog signal processiing based on quasi-floating gate transistors. IEEE Journal of Solid-State Circuits 39(3), 434–442 (2004)
Schrom, G., Selberherr, S.: Ultra-Low-Power CMOS Technologies (Invited paper). In: Proc. of International Semiconductor Conference, vol. 1, pp. 237–246 (1996)
Aunet, S.: Real-time reconfigurable devices implemented in UV-light programmable floating-gate CMOS. Ph.D. Dissertation 2002:52, Norwegian University of Science and Technology, Trondheim, Norway (2002)
Rabaey, J.M.: Digital Integrated Cirucuits - A design perspective, pp. 188–193. Prentice Hall, Englewood Cliffs (2003)
Alioto, M., Palumbo, G.: Impact of Supply Voltage Variations on Full Adder Delay: Analysis and Comparison. IEEE Transactions on very large scale integration (VLSI) systems 14(12) (December 2006)
Granhaug, K., Aunet, S.: Six Subthreshold Full Adder Cells characterized in 90 nm CMOS technology. Design and Diagnostics of Electronic Circuits and Systems, 25–30 (April 2006)
Alfredsson, J., Aunet, S., Oelmann, B.: Small Fan-in Floating-gate Circuits with Application to an Improved Adder Structure. In: Proc. of 20th international Conference on VLSI design, January 2007, Bangalore, India (2007)
Shams, A.M., Bayoumi, M.A.: A Framework for Fair Performance Evaluation of 1-bit Full Adder Cells. In: 42nd Midwest Symposium on Circuits and Systems, vol. 1, pp. 6–9 (1999)
Seo, I., Fox, R.M.: Comparison of Quasi-/Pseudo-Floating Gate Techniques. In: Proceedings of the International Symposium on Circuits and Systems, ISCAS 2004, May 2004, vol. 1, pp. 365–368 (2004)
Alfredsson, J., Oelmann, B.: Influence of Refresh Circuits Connected to Low Power Digital Quasi-Floating gate Designs. In: Proceedings of the 13th IEEE International Conference on Electronics, Circuits and Systems (ICECS 2006), December 2006, Nice, France, (2006)
International Technology Roadmap for Semiconductors, Webpage documents, http://public.itrs.net
Lande, T.S., Wisland, D.T., Sæther, T., Berg, Y.: Flogic – Floating Gate Logic for Low-Power Operation. In: Proceedings of International Conferens on Electronics Circuits and Systems (ICECS 1996), April 1996, vol. 2, pp. 1041–1044 (1996)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alfredsson, J., Aunet, S. (2007). Performance of CMOS and Floating-Gate Full-Adders Circuits at Subthreshold Power Supply. In: Azémard, N., Svensson, L. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2007. Lecture Notes in Computer Science, vol 4644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74442-9_52
Download citation
DOI: https://doi.org/10.1007/978-3-540-74442-9_52
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74441-2
Online ISBN: 978-3-540-74442-9
eBook Packages: Computer ScienceComputer Science (R0)