Abstract
A typical design exploration process using simulation tools for various cache parameters is a rather time-consuming process, even for low complexity applications. The main goal of an estimation methodology, introduced in this paper, is to provide fast and accurate estimates of the instruction cache miss rate of data-intensive applications implemented on a programmable embedded platform with multi-level instruction cache memory hierarchy, during the early design phases. Information is extracted from both the high-level code description (C code) of the application and its corresponding assembly code, without carrying out any kind of simulation. The proposed methodology requires only a single execution of the application in a general-purpose processor and uses only the assembly code of the targeted embedded processor. In order to automate the estimation procedure, a novel software tool named m-FICA implements the proposed methodology. The miss rate of two-level instruction cache can be estimated with high accuracy (>95%), comparing with simulation-based results while the required time cost is much smaller (orders of magnitude) than the simulation-based approaches.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zhang, D., Vahid, F.: Cache configuration exploration on prototyping platforms. In: 14th IEEE International Workshop on Rapid System Prototyping, June 2003, vol. 00, p. 164. IEEE, Los Alamitos (2003)
Givargis, T., Vahid, F.: Platune: A Tuning framework for system-on-a-chip platforms. IEEE Trans. Computer-Aided Design 21, 1–11 (2002)
Silva-Filho, A.G., Cordeiro, F.R., Sant’Anna, R.E., Lima, M.E.: Heuristic for Two-Level Cache Hierarchy Exploration Considering Energy Consumption and Performance. In: Vounckx, J., Azemard, N., Maurine, P. (eds.) PATMOS 2006. LNCS, vol. 4148, pp. 75–83. Springer, Heidelberg (2006)
Gordon-Ross, A., Vahid, F., Dutt, N.: Automatic Tuning of Two-Level Caches to Embedded Aplications. In: DATE, pp. 208–213 (February 2004)
Borg, A., Kessler, R., Wall, D.: Generation and analysis of very long address traces. In: International Symposium on Computer Architecture, May 1990, pp. 270–279 (1990)
Mueller, F., Whalley, D.: Fast Instruction Cache Analysis via Static Cache Simulation. In: Proc. of 28th Annual Simulation Symposium, 1995, pp. 105–114 (1995)
Lajolo, M., Lavagno, L., Sangiovanni-Vincentelli, A.: Fast instruction cache simulation strategies in a hardware/software co-design environment. In: Proc. of the Asian and South Pacific Design Automation Conference, ASP-DAC 1999 (January 1999)
Nohl, A., Braun, G., Schliebusch, O., Leupers, R., Meyr, H.: A Universal Technique for Fast and Flexible Instruction-Set Architecture Simulation. In: Proc. of the 39th conference on Design automation, DAC 2002, New Orleans, Louisiana, USA, pp. 22–27 (2002)
Edler, J., Hill, M.D.: A cache simulator for memory reference traces, http://www.neci.nj.nec.com/homepages/edler/d4
Liveris, N., Zervas, N., Soudris, D., Goutis, C.: A Code Transformation-Based Methodology for Improving I-Cache Performance of DSP Applications. In: Proc. of DATE, 2002, Paris, pp. 977–984 (2002)
Austin, T., Larson, E., Ernst, D.: SimpleScalar: An Infrastructure for Computer System Modeling. Computer 35(2), 59–67 (2002)
Kuhn, P.: Algorithms, Complexity Analysis and VLSI Architectures for MPEG-4 Motion Estimation. Kluwer Academic Publisher, Boston (1999)
Nam, K., Kim, J.-S., Park, R.-H., Shim, Y.S.: A fast hierarchical motion vector estimation algorithm using mean pyramid. IEEE Transactions on Circuits and Systems for Video Technology 5(4), 344–351 (1995)
Cheung, C.-K., Po, L.-M.: Normalized Partial Distortion Search Algorithm for Block Motion Estimation. Proc. IEEE Transaction on Circuits and Systems for Video Technology 10(3), 417–422 (2000)
Lafruit, G., Nachtergaele, L., Vahnhoof, B., Catthoor, F.: The Local Wavelet Transform: A Memory-Efficient, High-Speed Architecture Optimized to a Region-Oriented Zero-Tree Coder. Integrated Computer-Aided Engineering 7(2), 89–103 (2000)
Danckaert, K., Catthoor, F., De Man, H.: Platform independent data transfer and storage exploration illustrated on a parallel cavity detection algorithm. In: ACM Conference on Parallel and Distributed Processing Techniques and Applications III, pp. 1669–1675 (1999)
Dekker, A.H.: Kohonen neural networks for optimal colour quantization. Network: Computation in Neural Systems 5, 351–367 (1994)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kroupis, N., Soudris, D. (2007). Design Methodology and Software Tool for Estimation of Multi-level Instruction Cache Memory Miss Rate. In: Azémard, N., Svensson, L. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2007. Lecture Notes in Computer Science, vol 4644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74442-9_49
Download citation
DOI: https://doi.org/10.1007/978-3-540-74442-9_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74441-2
Online ISBN: 978-3-540-74442-9
eBook Packages: Computer ScienceComputer Science (R0)