Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4644))

  • 1479 Accesses

Abstract

The designer of an elliptic curve processor is faced with many design choices that include the algorithm and coordinate system to be used. The power consumption of elliptic curve processors is becoming increasingly important as such processors find new uses in power constrained environments. This paper studies the effect that algorithm and coordinate choices have on the power consumption and energy per point multiplication of an FPGA based, reconfigurable elliptic curve processor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic curves in cryptography. London Mathematical Society Lecture Note Series, vol. 265. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  2. National Institute of Standards and Technology (NIST): Recommended elliptic curves for federal government use. NIST Special Publication (1999)

    Google Scholar 

  3. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–209 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Miller, V.: Uses of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

    Google Scholar 

  5. Ozturk, E., Sunar, B., Savas, E.: Low-power elliptic curve cryptography using scaled modular arithmetic. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 107–118. Springer, Heidelberg (2004)

    Google Scholar 

  6. Batina, L., Guajardo, J., Kerins, T., Mentens, N., Tuyls, P., Verbauwhede, I.: An elliptic curve processor suitable for RFID-tags. Cryptology ePrint Archive, Report 2006/227 (2006)

    Google Scholar 

  7. Schroeppel, R., Beaver, C.L., Gonzales, R., Miller, R., Draelos, T.: A low-power design for an elliptic curve digital signature chip. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 366–380. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Bertoni, G., Breveglieri, L., Venturi, M.: Power aware design of an elliptic curve coprocessor for 8-bit platforms. In: Proceedings Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW 2006), pp. 337–341. IEEE, Los Alamitos (2006)

    Chapter  Google Scholar 

  9. National Institute of Standards and Technology (NIST): Recommendation for key management-part 1: general (Revised). NIST Special Publication 800–857 (2006)

    Google Scholar 

  10. IEEE P1363: Standard Specifications for Public Key Cryptography. IEEE Std 1363–2000 (2000)

    Google Scholar 

  11. Lopez, J., Dahab, R.: Improved algorithms for elliptic curve arithmetic in GF(2n). In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 201–212. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Al-Daoud, E., Mahmod, R., Rushdan, M., Kilicman, A.: A new addition formula for elliptic curves over GF(2n). IEEE Transactions on Computers 51(8), 972–975 (2002)

    Article  MathSciNet  Google Scholar 

  13. Morain, F., Olivos, J.: Speeding up the computations on an elliptic curve using addition-subtraction chains. Theoretical Informatics and Applications 24, 531–543 (1990)

    MATH  MathSciNet  Google Scholar 

  14. Montgomery, P.: Speeding the Pollard and elliptic curve methods of factorisation. Mathematics of Computation 48, 243–264 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lopez, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2m) without precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 316–327. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  16. Song, L., Parhi, K.: Low energy digit-serial/parallel finite field multipliers. Kulwer Journal of VLSI Signal Processing Systems 19(2), 149–166 (1998)

    Article  Google Scholar 

  17. Shantz, S.C.: From Euclid’s GCD to Montgomery multiplication to the great divide. Technical Report TR-2001-95, Sun Microsystems (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nadine Azémard Lars Svensson

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keller, M., Marnane, W. (2007). Low Power Elliptic Curve Cryptography. In: Azémard, N., Svensson, L. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2007. Lecture Notes in Computer Science, vol 4644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74442-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74442-9_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74441-2

  • Online ISBN: 978-3-540-74442-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics