Nothing Special   »   [go: up one dir, main page]

Skip to main content

Computation of Joint Timing Yield of Sequential Networks Considering Process Variations

  • Conference paper
Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation (PATMOS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4644))

Abstract

This paper presents a framework for estimating the timing yield of sequential networks in the presence of process variations. We present an accurate method for characterizing various parameters such as setup time, hold time, clock to output delay etc. of sequential elements in the network. Using these models and the models of interconnects gate delays, and clock skews, we perform statistical timing analysis of combinational blocks in the circuit. The result of the timing analysis is a set of constraints involving random process variables that the network has to satisfy together in order to work correctly. We compute the joint yield of all the constraints to estimate the yield of the entire network. The proposed method provides a speedup of up to 400× compared to 10000 Monte Carlo simulations with an average error of less than 1% and 5% in mean and standard deviation respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, A., Blaauw, D., Zolotov, V.: Statistical timing analysis for intra-die process variations with spatial correlations. In: Proc. of ICCAD (2003)

    Google Scholar 

  2. Bhardwaj, S., Ghanta, P., Vrudhula, S.: A framework for statistical timing analysis using non-linear delay and slew models. In: ICCAD 2006: Proceedings of the 2006 IEEE/ACM international conference on Computer-aided design, New York, NY, USA, pp. 225–230. ACM Press, New York (2006)

    Chapter  Google Scholar 

  3. Borkar, S., et al.: Parameteric variations and impact on circuits and microarchitecture. In: Proc. DAC (2003)

    Google Scholar 

  4. Chang, H., Sapatnekar, S.: Full-chip analysis of leakage power under process variations, including spatial correlations. In: IEEE/ACM Design Automation Conference, 2005, pp. 523–528. ACM Press, New York (2005)

    Google Scholar 

  5. Chang, H., Sapatnekar, S.S.: Statistical timing analysis under spatial correlations. IEEE Transactions on CAD (2005)

    Google Scholar 

  6. Chen, C.C.-P., Zhang, L., Hu, Y.: Statistical timing analysis in sequential circuit for on-chip global interconnect pipelining. In: IEEE DAC (2004)

    Google Scholar 

  7. Clark, C.E.: The greatest of a finite set of random variables. In: Operations Research (1961)

    Google Scholar 

  8. Ghanem, R.G., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  9. Jindrich, Z., Paul, F.: General framework for removal of clock network pessimism. In: IEEE/ACM ICCAD (2002)

    Google Scholar 

  10. Karnik, T., Borkar, S., De, V.: Sub-90 nm technologies-challenges and opportunities for cad. In: IEEE/ACM International Conference on CAD, 2002, ACM Press, New York (2002)

    Google Scholar 

  11. Keese, A., Matthies, H.G.: Numerical methods and smolyak quadrature for nonlinear stochastic partial differential equations. Technical report, Institute of Scientific Computing, Brunswick (2003)

    Google Scholar 

  12. Ling, W., Savaria, Y.: Analysis of wave-pipelined domino logic circuit and clocking styles subject to parametric variations. In: International Symposium on Quality Electronic Design (2006)

    Google Scholar 

  13. Mehrotra, V., Nassif, S., Boning, D., Chung, J.: Modeling the effects of manufacturing variation on high-speed microprocessor interconnect performance. In: International Electronic Devices Meeting, pp. 767–770. IEEE, Los Alamitos (December 1998)

    Google Scholar 

  14. Okada, K., Yamaoka, K., Onodera, H.: A statistical gate-delay model considering inra-gate variability. In: IEEE/ACM ICCAD (2003)

    Google Scholar 

  15. Pan, M., Chu, C.C.-N., Zhou, H.: Timing yield estimation using static timing analysis. In: IEEE International Symposium on Circuits and Systems (2005)

    Google Scholar 

  16. Rao, R., Devgan, A., Blaauw, D., Sylvester, D.: Parametric yield estimation considering leakage variability. In: Proc. of DAC (2004)

    Google Scholar 

  17. Roy, K., Mahmoodi, H., Mukhopadhyay, S.: Estimation of delay variations due to random-dopant fluctuations in nanoscale cmos circuits. IEEE Journal of Solid-State Circuits (2005)

    Google Scholar 

  18. Visweswariah, C., et al.: First-order incremental Block-Based Statistical Timing Analysis. In: IEEE/ACM Design Automation Conference, 2004, pp. 331–336 (2004)

    Google Scholar 

  19. Wang, J., Ghanta, P., Vrudhula, S.: Stochastic Analysis of Interconnect Performance in the Presence of Process Variations. In: Proc. of ICCAD (2004)

    Google Scholar 

  20. Zhan, Y., et al.: Correlation-aware statistical timing analysis with non-gaussian delay distributions. In: IEEE DAC, November 2005, IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  21. Zhang, L., et al.: Correlation-Preserved Non-Gaussian Statistical Timing Analysis with Quadratic Timing Model. In: Proc. of DAC (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nadine Azémard Lars Svensson

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goel, A., Bhardwaj, S., Ghanta, P., Vrudhula, S. (2007). Computation of Joint Timing Yield of Sequential Networks Considering Process Variations. In: Azémard, N., Svensson, L. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2007. Lecture Notes in Computer Science, vol 4644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74442-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74442-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74441-2

  • Online ISBN: 978-3-540-74442-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics