Nothing Special   »   [go: up one dir, main page]

Skip to main content

Is Observational Congruence Axiomatisable in Equational Horn Logic?

  • Conference paper
CONCUR 2007 – Concurrency Theory (CONCUR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4703))

Included in the following conference series:

  • 687 Accesses

Abstract

It is well known that bisimulation on μ-expressions cannot be finitely axiomatised in equational logic. Complete axiomatisations such as those of Milner and Bloom/Ésik necessarily involve implicational rules. However, both systems rely on features which go beyond pure equational Horn logic: either the rules are impure by involving non-equational side-conditions, or they are schematically infinitary like the congruence rule which is not Horn. It is an open question whether these complications cannot be avoided in the proof-theoretically and computationally clean and powerful setting of second-order equational Horn logic.

This paper presents a positive and a negative result regarding axiomatisability of observational congruence in equational Horn logic. Firstly, we show how Milner’s impure rule system can be reworked into a pure Horn axiomatisation that is complete for guarded processes. Secondly, we prove that for unguarded processes, both Milner’s and Bloom/Ésik’s axiomatisations are incomplete without the congruence rule, and neither system has a complete extension in rank 1 equational axioms. It remains open whether there are higher-rank equational axioms or Horn rules which would render Milner’s or Bloom/Ésik’s axiomatisations complete for unguarded processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aceto, L., Chen, T., Fokkink, W., Ingolfsdottir, A.: On the axiomatizability of priority. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 480–491. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Aceto, L., Fokkink, W., Ingolfsdottir, A., Luttik, B.: Finite equational bases in process algebra: Results and open questions. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity. LNCS, vol. 3838, pp. 338–367. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Aceto, L., Jeffrey, A.: A complete axiomatization of timed bisimulation for a class of timed regular behaviours. TCS 152(2), 251–268 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Andersen, H.R., Mendler, M.: An asynchronous process algebra with multiple clocks. In: Sannella, D. (ed.) ESOP 1994. LNCS, vol. 788, pp. 58–73. Springer, Heidelberg (1994)

    Google Scholar 

  5. Baeten, J.C.M., Middelburg, C.A.: Process Algebra with Timing. Springer, Heidelberg (1998)

    Google Scholar 

  6. Bloom, S.L., Ésik, Z.: Iteration algebras. Foundations of Computer Science 3(3), 245–302 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bloom, S.L., Ésik, Z.: Iteration Theories: The Equational Logic of Iterative Processes. In: EATCS Monographs in TCS, Springer, Heidelberg (1993)

    Google Scholar 

  8. Bloom, S.L., Ésik, Z.: Iteration algebras are not finitely axiomatizable. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 367–376. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Chen, T., Fokkink, W.: On finite alphabets and infinite bases III: Simulation. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 421–434. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Cleaveland, R., Lüttgen, G., Mendler, M.: An algebraic theory of multiple clocks. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 166–180. Springer, Heidelberg (1997)

    Google Scholar 

  11. Conway, J.H.: Regular Algebra and Finite Machines. Chapman & Hall, Australia (1971)

    MATH  Google Scholar 

  12. Ésik, Z.: The equational theory of fixed points with applications to generalized language theory. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 21–36. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Fokkink, W.: A complete equational axiomatization for prefix iteration. Information Processing Letters 52(6), 333–337 (1994)

    Article  MathSciNet  Google Scholar 

  14. Fokkink, W., Zantema, H.: Basic process algebra with iteration: Completeness of its equational axioms. The Computer J. 37(4), 259–267 (1994)

    Article  Google Scholar 

  15. van Glabbeek, R.: The linear time–branching time spectrum. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297. Springer, Heidelberg (1990)

    Google Scholar 

  16. van Glabbeek, R.: A complete axiomatization for branching bisimulation congruence of finite state behaviours. In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 473–484. Springer, Heidelberg (1993)

    Google Scholar 

  17. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)

    MATH  Google Scholar 

  18. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Inform. & Comp. 110(2), 366–390 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mendler, M., Lüttgen, G.: Is observational congruence on μ-expressions axiomatisable in equational Horn logic? Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik, Techn. Rep. No. 72, Univ. of Bamberg (June 2007)

    Google Scholar 

  20. Milner, R.: A complete inference system for a class of regular behaviours. J. of Computer and System Sciences 28(3), 439–466 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  21. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  22. Milner, R.: A complete axiomatisation for observational congruence of finite-state behaviours. Inform. & Comp. 81(2), 227–247 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  23. Moller, F.: Axioms for Concurrency. PhD thesis, LFCS, Univ. of Edinburgh (1989), Also published as ECS-LFCS-89-84

    Google Scholar 

  24. Moller, F.: The nonexistence of finite axiomatisations for CCS congruences. In: LICS 1990, pp. 142–153. IEEE Computer Society Press, Los Alamitos (1990)

    Google Scholar 

  25. Nadathur, G., Miller, D.: Higher-order Horn clauses. JACM 37(4), 777–814 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sewell, P.: Nonaxiomatisability of equivalences over finite state processes. Annals of Pure and Applied Logic 90, 163–191 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luís Caires Vasco T. Vasconcelos

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mendler, M., Lüttgen, G. (2007). Is Observational Congruence Axiomatisable in Equational Horn Logic?. In: Caires, L., Vasconcelos, V.T. (eds) CONCUR 2007 – Concurrency Theory. CONCUR 2007. Lecture Notes in Computer Science, vol 4703. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74407-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74407-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74406-1

  • Online ISBN: 978-3-540-74407-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics