Nothing Special   »   [go: up one dir, main page]

Skip to main content

Use of Adaptive Still Image Descriptors for Annotation of Video Frames

  • Conference paper
Image Analysis and Recognition (ICIAR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4633))

Included in the following conference series:

Abstract

This paper presents a novel method for annotating videos taken from the TRECVID 2005 data using only static visual features and metadata of still image frames. The method is designed to provide the user with annotation or tagging tools to incorporate multimedia data such as video or still images as well as text into searching or other combined applications running either on the web or on other networks. It mainly uses MPEG-7-based visual features and metadata of prototype images and allows the user to select either a prototype or a training set. It also adaptively adjusts the weights of the visual features the user finds most adequate to bridge the semantic gap. The user can also detect relevant regions in video frames by using a self-developed segmentation tool and can carry out region-based annotation with the same video frame set. The method provides satisfactory results even when the annotations of the TRECVID 2005 video data greatly vary considering the semantic level of concepts. It is simple and fast, using a very small set of training data and little or no user intervention. It also has the advantage that it can be applied to any combination of visual and textual features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhao, R., Grosky, W.I.: Negotiating the semantic gap: from feature maps to semantic landscapes. Pattern Recognition 35, 593–600 (2002)

    Article  MATH  Google Scholar 

  2. Zhou, X.S., Huang, T.S.: Unifying Keywords and Visual Contents in Image Retrieval. IEEE Multimedia 9(2), 23–33 (2002)

    Article  MathSciNet  Google Scholar 

  3. Barnard, K., et al.: Matching Words and Pictures. Journal of Machine Learning Research 3, 1107–1135 (2003)

    Article  MATH  Google Scholar 

  4. Hofmann, T.: Learning and Representing Topic. A Hierarchical Mixture Model for Word Occurrences in Document Databases. In: Proc. of CONALD, Pittsburgh (1998)

    Google Scholar 

  5. Wang, J.Z., Li, J.: Learning-based linguistic indexing of pictures with 2-D MHMMs. In: Proc. ACM Multimedia, pp. 436–445. ACM Press, New York (2002)

    Google Scholar 

  6. Lim, J.-H., Tian, Q., Mulhem, P.: Home Photo Content Modeling for Personalized Event-Based Retrieval. IEEE Multimedia 9(2), 28–37 (2003)

    Article  Google Scholar 

  7. Matsumoto, K., et al.: SVM-based Shot Boundary Detection with a Novel Feature. In: ICME. IEEE Proc. of International Conference Multimedia Exhibition, pp. 1837–1840 (2006)

    Google Scholar 

  8. Qi, G., et al.: Video Annotation by Active Learning and Cluster Tuning, IEEE-Computer Society. In: CVPRW. Proc. Of the 2006 Conference on Computer Vision and Pattern Recognition Workshop, pp. 114–121 (2006)

    Google Scholar 

  9. Vapnik, V.N.: The Nature of Statistical Learning Theory, 2nd edn. Springer, Heidelberg (1999)

    Google Scholar 

  10. Carbonetto, P., de Freitas, N., Barnard, K.: A Statistical Model for General Contextual Object Recognition. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 350–362. Springer, Heidelberg (2004)

    Google Scholar 

  11. Gabrilovich, E., Markovitch, S.: Feature Generation for Text Categorization Using World Knowledge. In: Proc. of The 19th International Joint Conf. for Artificial Intelligence (2005)

    Google Scholar 

  12. Metzler, D., Manmatha, R.: An inference network approach to image retrieval. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 42–50. Springer, Heidelberg (2004)

    Google Scholar 

  13. Manjunath, B.S., et al.: Introduction to MPEG-7. Wiley, Chichester (2002)

    Google Scholar 

  14. Smith, J.R., et al.: Large-Scale Concept Ontology for Multimedia. IEEE Multimedia 14(1), 86–90 (2007)

    Google Scholar 

  15. Hanbury, A.: MUSCLE, Guide to annotation, Version 2.12, Tech. Univ. of Vienna (2006)

    Google Scholar 

  16. Hanbury, A.: Analysis of Keywords Used in Image Understanding Tasks. In: Proceedings of the OntoImage Workshop, Genoa, Italy (2006)

    Google Scholar 

  17. Boll, S.: MultiTube–Where Web 2.0 and Multimedia Could Meet. IEEE Multimedia 14(1), 9–13 (2007)

    Article  Google Scholar 

  18. Paul, O.: Guidelines for the TRECVID, 2005 Evaluation (2006), http://www-nlpir.nist.gov/projects/tv2005/

  19. Manjunath, B.S., et al.: Color and Texture Descriptors. IEEE Trans.on Circuits and Systems for Video Technology 11(6), 703–715 (2001)

    Article  Google Scholar 

  20. Huang, J., et al.: Image indexing using color correlograms. In: Proc. IEEE Comp. Soc. Conf. Comp. Vis. and Patt. Rec., pp. 762–768. IEEE Computer Society Press, Los Alamitos (1997)

    Google Scholar 

  21. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  22. Kutics, A., Nakagawa, A.: Detecting Prominent Objects for Image Retrieval. In: IEEE International Conference on ICIP, vol. 3, pp. 445–448 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mohamed Kamel Aurélio Campilho

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kutics, A., Nakagawa, A., Shindoh, K. (2007). Use of Adaptive Still Image Descriptors for Annotation of Video Frames. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2007. Lecture Notes in Computer Science, vol 4633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74260-9_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74260-9_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74258-6

  • Online ISBN: 978-3-540-74260-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics