Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4682))

Included in the following conference series:

Abstract

The problem of synchronization for a class of neural networks with time-delays has been discussed in this paper.By using of the Lyapunov stability theorem, a novel delay-independent and decentralized linear-feedback control law is designed to achieve the exponential synchronization. The controllers can be more easily designed than that obtained. The illustrative examples show the effectiveness of the presented synchronization scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liang, X.B., Wu, L.D.: Globally Exponential Stability of Hopfield Neural Networks and Its Applications, Sci. China (series A), 523–532 (1995)

    Google Scholar 

  2. Forti, M., Tesi, A.: New Conditions for Global Stability of Neural Networks with Application to Linear and Quadratic Programming Problems, IEEE Trans. on Circ. and Sys. I: Fundanmetntal Theory and Application, 354–366 (1995)

    Google Scholar 

  3. Liao, X.X., Xiao, D.M.: Globally Exponential Stability of Hopfield Neural Networks with Time-Varying Delays, ACTA Electronica Sinica, 1-4 (2000)

    Google Scholar 

  4. Marco, M.D., Forti, M., Tesi, A.: Existence and Characterization of Limit Cycles in Nearly Symmetric Neural Networks, IEEE Trans. on Circ. and Sys. I: Fundanmetntal Theory and Application, 979–992 (2002)

    Google Scholar 

  5. Forti, M.: Some Extensions of a New Method to Analyze Complete Stability of Neural Networks. IEEE Trans. on Neural Networks 13, 1230–1238 (2002)

    Article  Google Scholar 

  6. Zeng, Z.G., Wang, J., Liao, X.X.: Global Exponential Stability of a General Class of Recurrent Neural Networks with Time-Varying Delays. IEEE Trans. on Circ. and Sys. I: Fundanmetntal Theory and Application 50, 1353–1358 (2003)

    Article  MathSciNet  Google Scholar 

  7. Zeng, Z.G., Wang, J., Liao, X.X.: Global Asymptotic Stability and Global Exponetial Stability of Networks with Unbounded Time-Varying Delays. IEEE Trans. Circuits Syst. II:express briefs 52, 168–173 (2005)

    Article  Google Scholar 

  8. Cao, J.D., Huang, D.S., Qu, Y.Z.: Global Robust Stability of Delayed Recurrent Neural Networks. Chaos,Solitons and Fractals 23, 221–229 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fantacci, R., Forti, M., Marini, M., et al.: A Neural Network for Constrained Optimaization with Application to CDMA Communication Systems. IEEE Trans. on Circ. and Sys. II:Analog and Digital Signal Processing 50, 484–487 (2003)

    Article  Google Scholar 

  10. Zhou, S.B., Liao, X.F., Yu, J.B., et al.: Chaos and Its Synchronization in Two-Neuron Systems with Discret Delays. Chaos,Solitons and Fractals 21, 133–142 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cao, J.D.: Global Stability Conditionso for Delayed CNNs. Hopfield Neural Networks and Its Applications. IEEE Trans. Circuits Syst. I, 48, 1330–1333 (2001)

    Article  MATH  Google Scholar 

  12. Cheng, C.J., Liao, T.L., Yan, J.J., et al.: Synchronization of Neural Networks by Decentralized Feedback Control. Physics Letters A 338, 28–35 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Laurent Heutte Marco Loog

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, J., Wang, Z., Liang, Y., Liao, W., Liao, X. (2007). Synchronization of Neural Networks by Decentralized Linear-Feedback Control. In: Huang, DS., Heutte, L., Loog, M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2007. Lecture Notes in Computer Science(), vol 4682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74205-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74205-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74201-2

  • Online ISBN: 978-3-540-74205-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics