Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4681))

Included in the following conference series:

  • 1513 Accesses

Abstract

This work adopted the fuzzy constraint-directed approach to model opponent’s beliefs in agent negotiation. The fuzzy constraint-directed approach involves the fuzzy probability constraint and the fuzzy instance reasoning. The fuzzy probability constraint is used to cluster the opponent’s regularities and to eliminate the noisy hypotheses or beliefs, so as to increase the efficiency on the convergence of behavior patterns and to improve the effectiveness on beliefs learning. The fuzzy instance reasoning reuses the prior opponent knowledge to speed up problem-solving, and reason the proximate regularities to acquire desirable results on predicting opponent behavior. Besides, the proposed interaction method allows the agent to make a concession dynamically based on desirable objectives. Moreover, experimental results suggest that the proposed framework enabled an agent to achieve a higher reward, a fairer deal, or a less cost of negotiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bowling, M., Veloso, M.: Multiagent Learning Using a Variable Learning Rate. Artificial Intelligence 33, 215–250 (2002)

    Article  Google Scholar 

  2. Cai, K.Y.: Robustness of Fuzzy Reasoning and Equalities of Fuzzy Sets. IEEE Transactions on Fuzzy Systems 9(5), 138–150 (2001)

    Google Scholar 

  3. Carmel, D., Markovitch, S.: Model-Based Learning of Interaction Strategies in Multi-Agent Systems. Journal of Experimental and Theoretical Artificial Intelligence 10, 309–332 (1998)

    Article  MATH  Google Scholar 

  4. Dubois, D., Fragier, H., Prade, H.: Propagation and Satisfaction of Flexible Constraints. In: Yager, R., Zadeh, L. (eds.) Fuzzy Sets, Neural Networks and Soft Computing, Van Nostrand Reinhold, New York, pp. 166–187 (1994)

    Google Scholar 

  5. Dubois, D., Fortemps, P.: Theory and Methodology Computing Improved Optimal Solutions to Max-Min Flexible Constrain Satisfaction. European Journal of Operational Research 118, 95–126 (1999)

    Article  MATH  Google Scholar 

  6. Dubois, D., Fragier, H., Fortemps, P.: Fuzzy Scheduling: Modeling Flexible Constraints vs. Coping with Incomplete Knowledge. European Journal of Operational Research. 147, 231–252 (2003)

    Article  MATH  Google Scholar 

  7. Faratin, P., Sierra, C., Jennings, N.R.: Using Similarity Criteria to Make Trade-offs in Automated Negotiation. Artificial Intelligence. 142(2), 205–237 (2002)

    Article  MATH  Google Scholar 

  8. Hu, J., Weliman, M.P.: Learning about Other Agents in a Dynamic Multiagent System. Journal of Cognitive Systems Research 2, 67–79 (2001)

    Article  Google Scholar 

  9. Kowalczyk, R., Bui, V.: On Constraint-based Reasoning in R-negotiation Agents. Agent-Mediated Electronic Commerce III. Current Issues in Agent-Based Electronic Commerce Systems, 31–46 (2001)

    Google Scholar 

  10. Lai, K.R.: Fuzzy Constraint Processing. Ph.D. thesis, NCSU, Raleigh, N.C (1992)

    Google Scholar 

  11. Lai, K.R.: Lin, Menq-Wen: Modeling Agent Negotiation via Fuzzy Constraints in E-business. Computational Intelligence 20, 624–642 (2004)

    Article  MATH  Google Scholar 

  12. Lai, K.R., Lin, M.-W., Yu, T.-J.: Fuzzy Constraint-Based Agent Negotiation. Journal of Computer Science and Technology 20(3), 319–330 (2005)

    Article  Google Scholar 

  13. Liu, S.H., Tian, Y.T.: Multi-agent Learning Methods in an Uncertain Environment. In: Proc. International Conference on Machine Learning and Cybernetics, 4-5 November, vol. 2, pp. 650–654 (2002)

    Google Scholar 

  14. Luo, X., Leung, H.F., Lee, J.H.M.: A Multi-agent Framework for Meeting Scheduling using Fuzzy Constraints. In: Proc. the Fourth International Conference on MultiAgent Systems, pp. 409–410 (2000)

    Google Scholar 

  15. Luo, X., Jennings, N.R., Shadbolt, N., Leung, H.F., Lee, J.H.M.: A Fuzzy Constraint Based Model for Bilateral Multi-issue Negotiations in Semi-competitive Environments. Artificial Intelligence 148, 53–102 (2003)

    Article  MATH  Google Scholar 

  16. Markovitch, S.: Learning and Exploiting Relative Weaknesses of Opponent Agents. NWO-SIKS Workshop on Opponent Models in Games. IKAT, Universiteit Maastricht (December 4, 2003)

    Google Scholar 

  17. Prade, J., Moura-Pires, H.: Specifying Fuzzy Constraints Interactions without using Aggregation Operators. In: Proc. the Ninth IEEE International Conference on Fuzzy Systems, vol. 1, pp. 228–233 (2000)

    Google Scholar 

  18. Pruitt, D.G.: Negotiation Behavior. Academic Press, London (1981)

    Google Scholar 

  19. Ren, Z., Anumba, C.J., Ugwu, O.O.: Negotiation in a Multi-agent System for Construction Claims Negotiation. Applied Artificial Intelligence 16, 359–394 (2002)

    Article  Google Scholar 

  20. Zadeh, L.A.: Fuzzy Sets as A Basis for A Theory of Possibility. Fuzzy Sets and Systems 1, 3–28 (1978)

    Article  MATH  Google Scholar 

  21. Zeng, D., Sycara, K.: Bayesian Learning in Negotiation. Internet, J. Human-Computer Stud. 48(1), 125–141 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Laurent Heutte Marco Loog

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Yu, TJ., Lai, K.R., Lin, MW., Kao, BR. (2007). Modeling Opponent’s Beliefs Via Fuzzy Constraint-Directed Approach in Agent Negotiation. In: Huang, DS., Heutte, L., Loog, M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues. ICIC 2007. Lecture Notes in Computer Science, vol 4681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74171-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74171-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74170-1

  • Online ISBN: 978-3-540-74171-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics