Abstract
We consider the interval constrained coloring problem, which appears in the interpretation of experimental data in biochemistry. Monitoring hydrogen-deuterium exchange rates via mass spectroscopy experiments is a method used to obtain information about protein tertiary structure. The output of these experiments provides data about the exchange rate of residues in overlapping segments of the protein backbone. These segments must be re-assembled in order to obtain a global picture of the protein structure. The interval constrained coloring problem is the mathematical abstraction of this re-assembly process.
The objective of the interval constrained coloring problem is to assign a color (exchange rate) to a set of integers (protein residues) such that a set of constraints is satisfied. Each constraint is made up of a closed interval (protein segment) and requirements on the number of elements that belong to each color class (exchange rates observed in the experiments).
We show that the problem is NP-complete for arbitrary number of colors and we provide algorithms that given a feasible instance find a coloring that satisfies all the coloring requirements within ±1 of the prescribed value. In light of our first result, this is essentially the best one can hope for. Our approach is based on polyhedral theory and randomized rounding techniques. Furthermore, we develop a quasi-polynomial-time approximation scheme for a variant of our problem where we are asked to find a coloring satisfying as many fragments as possible.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Althaus, E., Canzar, S., Emmett, M.R., Karrenbauer, A., Marshall, A.G., Meyer-Basese, A., Zhang, H.: Computing H/D-exchange speeds of single residues from data of peptic fragments. In: 23rd Annual ACM Symposium on Applied Computing (2008)
Chang, J., Erlebach, T., Gailis, R., Khuller, S.: Broadcast scheduling: Algorithms and complexity. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (2008)
Elbassioni, K.M., Sitters, R., Zhang, Y.: A quasi-PTAS for profit-maximizing pricing on line graphs. In: Proceedings of the 15th Annual European Symposium on Algorithms, pp. 451–462 (2007)
Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Dependent rounding and its applications to approximation algorithms. J. ACM 53(3), 324–360 (2006)
Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, New York (1979)
Uno, T.: A fast algorithm for enumerating bipartite perfect matchings. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 367–379. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Althaus, E., Canzar, S., Elbassioni, K., Karrenbauer, A., Mestre, J. (2008). Approximating the Interval Constrained Coloring Problem. In: Gudmundsson, J. (eds) Algorithm Theory – SWAT 2008. SWAT 2008. Lecture Notes in Computer Science, vol 5124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69903-3_20
Download citation
DOI: https://doi.org/10.1007/978-3-540-69903-3_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69900-2
Online ISBN: 978-3-540-69903-3
eBook Packages: Computer ScienceComputer Science (R0)