Abstract
A string matching approach is proposed to find a region correspondance between two images. Regions and their spatial relationships are represented by two combinatorial pyramids encoding two segmentation hierarchies. Our matching algorithm is decomposed in two steps: We first require that the features of the two matched regions be similar. This threshold on the similarity of the regions to be matched is used as a pruning step. We secondly require that at least one cut may be determined in each hierarchy such that the cyclic sequence of neighbors of the two matched regions have similar features. This distance is based on a cicular string matching algorithm which uses both the orientability of the plane and the hierarchical encoding of the two regions to reduce the computational cost of the matching and enforce its robustness.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Kumar, S., Sallam, M., Goldgof, D.: Matching point features under small nonrigid motion. Pattern Recognition 34, 2353–2365 (2001)
Kaygin, S., Bulut, M.M.: Shape recognition using attributed string matching with polygons vertices as the primitives. Pattern Recognition Letters 23, 287–294 (2002)
Caihua, W., Keiichi, A.: Region correspondence by inexact attributed planar graph matching. In: 5th International Conference on Computer Vision, June 1995, pp. 440–447 (1995)
Llados, J., Marti, E., Villanueva, J.: Symbol recognition by error-tolerant subgraph matching between region adjacency graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1137–1143 (2001)
Neuhaus, M., Bunke, H.: An error-tolerant approximate matching algorithm for attributed planar graphs and its application to fingerprint classification. In: Fred, A., Caelli, L.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 180–189. Springer, Heidelberg (2004)
Glantz, R., Pelillo, M., Kropatsch, W.G.: Hierarchical matching of panoramic images. In: ICIAP 2003, p. 328. IEEE Computer Society, Los Alamitos (2003)
Brun, L., Kropatsch, W.: Construction of combinatorial pyramids. In: Hancock, E., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 1–12. Springer, Heidelberg (2003)
Brun, L.: Traitement d’images couleur et pyramides combinatoires. Habilitation à diriger des recherches, Université de Reims (2002)
Gdalyahu, Y., Weinshall, D.: Flexible syntactic matching of curves and its application to automatic hierarchical classification of silhouettes. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 1312–1328 (1999)
Malgouyres, R., Brunet, F., Fourey, S.: Binomial convolutions and derivatives estimation from noisy discretizations. In: Coeurjolly, D. (ed.) Proceedings of DGCI 2008. LNCS, vol. 4992, Springer, Heidelberg (2008)
Shen, J., Shen, D.: Orthogonal legendre moments and their calculation. In: ICPR 1996, vol. 2, p. 241 (1996)
Brun, L., Mokhtari, M., Meyer, F.: Hierarchical watersheds within the combinatorial pyramid framework. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 34–44. Springer, Heidelberg (2005)
Pruvot, J.H., Brun, L.: Scale set representation for image segmentation. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 126–137. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brun, L., Pruvot, JH. (2008). Hierarchical Matching Using Combinatorial Pyramid Framework. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds) Image and Signal Processing. ICISP 2008. Lecture Notes in Computer Science, vol 5099. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69905-7_40
Download citation
DOI: https://doi.org/10.1007/978-3-540-69905-7_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69904-0
Online ISBN: 978-3-540-69905-7
eBook Packages: Computer ScienceComputer Science (R0)