Nothing Special   »   [go: up one dir, main page]

Skip to main content

Optic Disc Segmentation by Means of GA-Optimized Topological Active Nets

  • Conference paper
Image Analysis and Recognition (ICIAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5112))

Included in the following conference series:

Abstract

In this paper we propose a new approach to the optic disc segmentation process in digital retinal images by means of Topological Active Nets (TAN). This is a deformable model used for image segmentation that integrates features of region-based and edge-based segmentation techniques, being able to fit the edges of the objects and model their inner topology. The optimization of the Active Nets is performed by a genetic algorithm, with adapted or new ad hoc genetic operators to the problem. The active nets incorporate new energy terms for the optic disc segmentations, without the need of any pre-processing of the images. We present results of optic disc segmentations showing the advantages of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lalonde, M., Beaulieu, M., Gagnon, L.: Fast and robust optic disk detection using pyramidal decomposition and Hausdorff-based template matching. IEEE Transaction on Medical Imaging 20, 1193–1200 (2001)

    Article  Google Scholar 

  2. Chrástek, R., Wolf, M., Donath, K., Michelson, G., Niemann, H.: Optic disc segmentation in retinal images. In: Bildverarbeitung fur die Medizin, pp. 263–266 (2002)

    Google Scholar 

  3. Abdel-Ghafar, R.A., Morris, T.: Progress towards automated detection and characterization of the optic disc in glaucoma and diabetic retinopathy. Informatics for Health and Social Care 32(1), 19–25 (2007)

    Article  Google Scholar 

  4. Jelinek, H.F., Depardieu, C., Lucas, C., Cornforth, D.J., Huang, W., Cree, M.J.: Towards vessel characterisation in the vicinity of the optic disc in digital retinal images. In: McCane (ed.) Proceedings of the Image and Vision Computing Conference, New Zealand (2005)

    Google Scholar 

  5. Mendels, F., Heneghan, C., Thiran, J.-P.: Identification of the optic disk boundary in retinal images using active contours. In: Proceedings of the Irish Machine Vision and Image Processing Conference, pp. 103–115 (1999)

    Google Scholar 

  6. Osareh, A., Mirmehdi, M., Thomas, B., Markham, R.: Colour morphology and snakes for optic disc localisation. In: Houston, A., Zwiggelaar, R. (eds.) The 6th Medical Image Understanding and Analysis Conference, pp. 21–24 (2002)

    Google Scholar 

  7. Chanwimaluang, T., Fan, G.: An efficient algorithm for extraction of anatomical structures in retinal images. IEEE International Conference on Image Processing 23, 1093–1096 (2003)

    Google Scholar 

  8. Lowell, J., Hunter, A., Steel, D., Basu, A., Ryder, R., Fletcher, E., Kennedy, L.: Optic nerve head segmentation. IEEE Transactions on Medical Imaging 23(2), 256–264 (2004)

    Article  Google Scholar 

  9. Tsumiyama, K.S.Y., Yamamoto, K.: Active net: Active net model for region extraction. IPSJ SIG notes 89(96), 1–8 (1989)

    Google Scholar 

  10. Ansia, F.M., Penedo, M.G., Mariño, C., Mosquera, A.: A new approach to active nets. Pattern Recognition and Image Analysis 2, 76–77 (1999)

    Google Scholar 

  11. Ballerini, L.: Medical image segmentation using genetic snakes. In: Proceedings of SPIE: Application and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation II, vol. 3812, pp. 13–23 (1999)

    Google Scholar 

  12. Fan, Y., Jiang, T.Z., Evans, D.J.: Volumetric segmentation of brain images using parallel genetic algorithms. IEEE Tran. on Medical Imaging 21(8), 904–909 (2002)

    Article  Google Scholar 

  13. Ibáñez, O., Barreira, N., Santos, J., Penedo, M.G.: Topological Active Nets Optimization Using Genetic Algorithms. In: Campilho, A., Kamel, M. (eds.) ICIAR 2006. LNCS, vol. 4141, pp. 272–282. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aurélio Campilho Mohamed Kamel

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Novo, J., Penedo, M.G., Santos, J. (2008). Optic Disc Segmentation by Means of GA-Optimized Topological Active Nets. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69812-8_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69811-1

  • Online ISBN: 978-3-540-69812-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics