Abstract
We present a novel image feature descriptor for rotationally invariant 2D texture classification. This extends our previous work on noise-resistant and intensity-shift invariant median binary patterns (MBPs), which use binary pattern vectors based on adaptive median thresholding. In this paper the MBPs are hashed to a binary chain or equivalence class using a circular bit-shift operator. One binary pattern vector (ie. smallest in value) from the group is selected to represent the equivalence class. The resolution and rotation invariant MBP (MBP ROT) texture descriptor is the distribution of these representative binary patterns in the image at one or more scales. A special subset of these rotation and scale invariant representative binary patterns termed uniform patterns leads to a more compact and robust MBP descriptor (MBP UNIF) that outperforms the rotation invariant uniform local binary patterns (LBP UNIF). We quantitatively compare and demonstrate the advantage of the new MBP texture descriptors for classification using the Brodatz and Outex texture dictionaries.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tuceryan, M., Jain, A.K.: Texture analysis. Handbook of pattern recognition & computer vision, 235–276 (1993)
Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics 3(6), 610–621 (1973)
Davis, L.S., Johns, S.A., Aggarwal, J.K.: Texture analysis using generalized co-occurrence matrices. IEEE Transactions on Pattern Analysis and Machine Intelligence 1(3), 251–259 (1979)
Davis, L.S.: Polarograms: A new tool for image texture analysis. Pattern Recognition 13(3), 219–223 (1981)
Kashyap, R., Khotanzad, A.: A model-based method for rotation invariant texture classification. PAMI 8, 472–481 (1986)
Mao, J., Jain, A.K.: Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recognition 25(2), 173–188 (1992)
Cohen, F.S., Fan, Z., Patel, M.A.: Classification of rotated and scaled textured images using gaussian markov random field models. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(2), 192–202 (1991)
Leung, M.M., Peterson, A.M.: Scale and rotation invariant texture classification. In: 26th Asilomar Conf Signals, Systems and Comp., pp. 461–465 (1992)
Porat, M., Zeevi, Y.Y.: The generalized Gabor scheme of image representation in biological and machine vision. IEEE Trans. PAMI 10(4), 452–468 (1988)
Haley, G.M., Manjunath, B.S.: Rotation-invariant texture classification using a complete space-frequency model. IEEE Trans IP 8(2), 255–269 (1999)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)
Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. International Journal of Computer Vision 62(1-2), 61–81 (2005)
Hafiane, A., Seetharaman, G., Zavidovique, B.: Median binary pattern for textures classification. In: ICIAR, pp. 387–398 (2007)
Brodatz, P.: Texture: a Photographic Album for Artists and Designers. Dover, New York (1966)
Ojala, T., Mäenpää, T., Pietikäinen, M., Viertola, J., Kyllonen, J., Huovinene, S.: Outex - a new framework for empirical evaluation of texture analysis algorithms. In: Proc. 16th Intl. Conf. Pattern Recognition, vol. 1, pp. 706–707 (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hafiane, A., Seetharaman, G., Palaniappan, K., Zavidovique, B. (2008). Rotationally Invariant Hashing of Median Binary Patterns for Texture Classification. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_61
Download citation
DOI: https://doi.org/10.1007/978-3-540-69812-8_61
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69811-1
Online ISBN: 978-3-540-69812-8
eBook Packages: Computer ScienceComputer Science (R0)