Nothing Special   »   [go: up one dir, main page]

Skip to main content

Rotationally Invariant Hashing of Median Binary Patterns for Texture Classification

  • Conference paper
Image Analysis and Recognition (ICIAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5112))

Included in the following conference series:

Abstract

We present a novel image feature descriptor for rotationally invariant 2D texture classification. This extends our previous work on noise-resistant and intensity-shift invariant median binary patterns (MBPs), which use binary pattern vectors based on adaptive median thresholding. In this paper the MBPs are hashed to a binary chain or equivalence class using a circular bit-shift operator. One binary pattern vector (ie. smallest in value) from the group is selected to represent the equivalence class. The resolution and rotation invariant MBP (MBP ROT) texture descriptor is the distribution of these representative binary patterns in the image at one or more scales. A special subset of these rotation and scale invariant representative binary patterns termed uniform patterns leads to a more compact and robust MBP descriptor (MBP UNIF) that outperforms the rotation invariant uniform local binary patterns (LBP UNIF). We quantitatively compare and demonstrate the advantage of the new MBP texture descriptors for classification using the Brodatz and Outex texture dictionaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tuceryan, M., Jain, A.K.: Texture analysis. Handbook of pattern recognition & computer vision, 235–276 (1993)

    Google Scholar 

  2. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics 3(6), 610–621 (1973)

    Article  Google Scholar 

  3. Davis, L.S., Johns, S.A., Aggarwal, J.K.: Texture analysis using generalized co-occurrence matrices. IEEE Transactions on Pattern Analysis and Machine Intelligence 1(3), 251–259 (1979)

    Article  Google Scholar 

  4. Davis, L.S.: Polarograms: A new tool for image texture analysis. Pattern Recognition 13(3), 219–223 (1981)

    Article  Google Scholar 

  5. Kashyap, R., Khotanzad, A.: A model-based method for rotation invariant texture classification. PAMI 8, 472–481 (1986)

    Google Scholar 

  6. Mao, J., Jain, A.K.: Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recognition 25(2), 173–188 (1992)

    Article  Google Scholar 

  7. Cohen, F.S., Fan, Z., Patel, M.A.: Classification of rotated and scaled textured images using gaussian markov random field models. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(2), 192–202 (1991)

    Article  Google Scholar 

  8. Leung, M.M., Peterson, A.M.: Scale and rotation invariant texture classification. In: 26th Asilomar Conf Signals, Systems and Comp., pp. 461–465 (1992)

    Google Scholar 

  9. Porat, M., Zeevi, Y.Y.: The generalized Gabor scheme of image representation in biological and machine vision. IEEE Trans. PAMI 10(4), 452–468 (1988)

    MATH  Google Scholar 

  10. Haley, G.M., Manjunath, B.S.: Rotation-invariant texture classification using a complete space-frequency model. IEEE Trans IP 8(2), 255–269 (1999)

    Google Scholar 

  11. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

    Article  Google Scholar 

  12. Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. International Journal of Computer Vision 62(1-2), 61–81 (2005)

    Article  Google Scholar 

  13. Hafiane, A., Seetharaman, G., Zavidovique, B.: Median binary pattern for textures classification. In: ICIAR, pp. 387–398 (2007)

    Google Scholar 

  14. Brodatz, P.: Texture: a Photographic Album for Artists and Designers. Dover, New York (1966)

    Google Scholar 

  15. Ojala, T., Mäenpää, T., Pietikäinen, M., Viertola, J., Kyllonen, J., Huovinene, S.: Outex - a new framework for empirical evaluation of texture analysis algorithms. In: Proc. 16th Intl. Conf. Pattern Recognition, vol. 1, pp. 706–707 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aurélio Campilho Mohamed Kamel

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hafiane, A., Seetharaman, G., Palaniappan, K., Zavidovique, B. (2008). Rotationally Invariant Hashing of Median Binary Patterns for Texture Classification. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69812-8_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69811-1

  • Online ISBN: 978-3-540-69812-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics