Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Simple Shadow Based Method for Camera Calibration

  • Conference paper
Image Analysis and Recognition (ICIAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5112))

Included in the following conference series:

  • 1712 Accesses

Abstract

Using only shadow trajectories of stationary objects in a scene, we demonstrate that a camera can be calibrated robustly. We require at least two vertical objects to be visible in the image casting shadows on the ground plane. Using properties of these cast shadows, the horizon line (or the line at infinity) of the ground plane is robustly estimated. This leads to pole-polar constraints on the image of the absolute conic (IAC). We show that we require fewer images than the existing methods and demonstrate that our method performs well in presence of large noise. We perform experiments with synthetic data and real data captured from live webcams, demonstrating encouraging results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agapito, L.D., Hayman, E., Reid, I.: Self-calibration of rotating and zooming cameras. Int. J. Comput. Vision 45(2), 107–127 (2001)

    Article  MATH  Google Scholar 

  2. Antone, M., Bosse, M.: Calibration of outdoor cameras from cast shadows. In: Proc. IEEE Int. Conf. Systems, Man and Cybernetics, pp. 3040–3045 (2004)

    Google Scholar 

  3. Bouguet, J., Perona, P.: 3D photography on your desk. In: Proc. ICCV, pp. 43–50 (1998)

    Google Scholar 

  4. Cao, X., Foroosh, H.: Simple calibration without metric information using an isosceles trapezoid. In: Proc. ICPR, pp. 104–107 (2004)

    Google Scholar 

  5. Cao, X., Shah, M.: Camera calibration and light source estimation from images with shadows. In: Proc. IEEE CVPR, pp. 918–923 (2005)

    Google Scholar 

  6. Caprile, B., Torre, V.: Using vanishing points for camera calibration. Int. J. Comput. Vision 4(2), 127–140 (1990)

    Article  Google Scholar 

  7. Caspi, Y., Werman, M.: Vertical parallax from moving shadows. In: Proc. CVPR, pp. 2309–2315 (2006)

    Google Scholar 

  8. Cipolla, R., Drummond, T., Robertson, D.: Camera calibration from vanishing points in images of architectural scenes. In: Proc. of BMVC, pp. 382–391 (1999)

    Google Scholar 

  9. Faugeras, O., Luong, T., Maybank, S.: Camera self-calibration: theory and experiments. In: Proc. of ECCV, pp. 321–334 (1992)

    Google Scholar 

  10. Hartley, R.I.: Self-calibration from multiple views with a rotating camera. In: Proc. ECCV, pp. 471–478 (1994)

    Google Scholar 

  11. Hartley, R.I.: Self-calibration of stationary cameras. Int. J. Comput. Vision 22(1), 5–23 (1997)

    Article  Google Scholar 

  12. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  13. Heyden, A., Astrom, K.: Euclidean reconstruction from image sequences with varying and unknown focal length and principal point. In: Proc. IEEE CVPR, pp. 438–443 (1997)

    Google Scholar 

  14. Liebowitz, D., Zisserman, A.: Combining scene and auto-calibration constraints. In: Proc. IEEE ICCV, pp. 293–300 (1999)

    Google Scholar 

  15. Lu, F., Shen, Y., Cao, X., Foroosh, H.: Camera calibration from two shadow trajectories. In: Proc. ICPR, pp. 1–4 (2005)

    Google Scholar 

  16. Pollefeys, M., Koch, R., Gool, L.V.: Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters. Int. J. Comput. Vision 32(1), 7–25 (1999)

    Article  Google Scholar 

  17. Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical Recipes in C. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  18. Sturm, P.: Critical motion sequences for the self-calibration of cameras and stereo systems with variable focal length. In: British Machine Vision Conference, Nottingham, England, September 1999, pp. 63–72 (1999)

    Google Scholar 

  19. Triggs, B.: Autocalibration from Planar Scenes. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 89–105. Springer, Heidelberg (1998)

    Google Scholar 

  20. Tsai, R.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf tv cameras and lenses. IEEE J. of Robotics and Automation 3(4), 323–344 (1987)

    Article  Google Scholar 

  21. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  22. Zhang, Z.: Camera calibration with one-dimensional objects. IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 892–899 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aurélio Campilho Mohamed Kamel

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Junejo, I.N. (2008). A Simple Shadow Based Method for Camera Calibration. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69812-8_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69811-1

  • Online ISBN: 978-3-540-69812-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics