Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Empirical Analysis of the Impact of Prioritised Sweeping on the DynaQ’s Performance

  • Conference paper
Artificial Intelligence and Soft Computing – ICAISC 2008 (ICAISC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5097))

Included in the following conference series:

Abstract

Reinforcement learning tackles the problem of how to act optimally given observations of the current world state. Agents that learn from reinforcements execute actions in an environment and receive feedback (reward) that can be used to guide the learning process. The distinguishing feature of reinforcement learning is that the model of the environment (i.e., effects of actions or the reward function) are not known in advance. Model-based approaches represent a class of reinforcement learning algorithms which learn the model of dynamics. This model can be used by the learning agent to simulate interactions with the environment. DynaQ and its extended version with prioritised sweeping are the most popular examples of model-based approaches. This paper shows that, contrary to common belief, DynaQ with prioritised sweeping may perform worse than pure DynaQ in domains where the agent can be easily misled by a sub-optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andre, D., Friedman, N., Parr, R.: Generalized prioritized sweeping. In: Proceedings of the 1997 conference on Advances in Neural Information Processing Systems, pp. 1001–1007 (1997)

    Google Scholar 

  2. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: Structural assumptions and computational leverage. Journal of Artificial Intelligence Research 11, 1–94 (1999)

    MATH  MathSciNet  Google Scholar 

  3. Dearden, R., Friedman, N., Russell, S.J.: Bayesian Q-learning. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence, pp. 761–768. AAAI Press (1998)

    Google Scholar 

  4. Kalyanakrishnan, S., Stone, P., Liu, Y.: Model-based reinforcement learning in a complex domain. In: RoboCup-2007: Robot Soccer World Cup XI. Springer, Berlin (2008)

    Google Scholar 

  5. Moore, A.W., Atkenson, C.G.: Prioritized sweeping: Reinforcement learning with less data and less time. Machine Learning 13, 103–130 (1993)

    Google Scholar 

  6. Peng, J., Williams, R.J.: Efficient learning and planning within the dyna framework. In: Proceedings of the 1993 IEEE International Conference on Neural Networks, pp. 168–174 (1993)

    Google Scholar 

  7. Rayner, D.C., Davison, K., Bulitko, V., Anderson, K., Lu, J.: Real-time heuristic search with a priority queue. In: Proceedings of the 2007 International Joint Conference on Artificial Intelligence, pp. 2372–2377 (2007)

    Google Scholar 

  8. Strens, M.J.A.: A bayesian framework for reinforcement learning. In: Proceedings of the 17th International Conference on Machine Learning, pp. 943–950 (2000)

    Google Scholar 

  9. Sutton, R.S.: Integrated architectures for learning, planning, and reacting based on approximating dynamic programming. In: Proceedings of the Seventh International Conference on Machine Learning, pp. 216–224 (1990)

    Google Scholar 

  10. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction (Adaptive Computation and Machine Learning). MIT Press, Cambridge (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Leszek Rutkowski Ryszard Tadeusiewicz Lotfi A. Zadeh Jacek M. Zurada

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grześ, M., Kudenko, D. (2008). An Empirical Analysis of the Impact of Prioritised Sweeping on the DynaQ’s Performance. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_98

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69731-2_98

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69572-1

  • Online ISBN: 978-3-540-69731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics