Nothing Special   »   [go: up one dir, main page]

Skip to main content

Ensemble of Dipolar Neural Networks in Application to Survival Data

  • Conference paper
Artificial Intelligence and Soft Computing – ICAISC 2008 (ICAISC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5097))

Included in the following conference series:

Abstract

In the paper the ensemble of dipolar neural networks (EDNN) for analysis of survival data is proposed. The tool is build on the base of the learning sets, which contain the data from clinical studies following patients response for a given treatment. Such datasets may contain incomplete (censored) information on patients failure times. The proposed method is able to cope with censored observations and as the result returns the aggregated Kaplan-Meier survival function. The prediction ability of the received tool as well as the significance of individual features is verified by the Brier score, \(\tilde{D}_{S,x}\) and \(\hat{D}_x\) measures of predictive accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bobrowski, L., Krȩtowska, M., Krȩtowski, M.: Design of neural classifying networks by using dipolar criterions. In: Proc. of the Third Conference on Neural Networks and Their Applications, Kule, Poland, pp. 689–694 (1997)

    Google Scholar 

  2. Breiman, L.: How to use survival forest, http://stat-www.berkeley.edu/users/breiman

  3. Cox, D.R.: Regression models and life tables (with discussion). Journal of the Royal Statistical Society B 34, 187–220 (1972)

    MATH  Google Scholar 

  4. Fleming, T.R., Harrington, D.P.: Counting Processes and Survival Analysis. John Wiley & Sons, Inc., Chichester (1991)

    MATH  Google Scholar 

  5. Graf, E., Schmoor, C., Sauerbrei, W., Schumacher, M.: Assessment and comparison of prognostic classification schemes for survival data. Statistics in Medicine 18, 2529–2545 (1999)

    Article  Google Scholar 

  6. Hothorn, T., Lausen, B., Benner, A., Radespiel-Troger, M.: Bagging survival trees. Statistics in Medicine 23, 77–91 (2004)

    Article  Google Scholar 

  7. Hothorn, T., Buhlmann, P., Dudoit, S., Molinaro, A.M., van der Laan, M.J.: Survival ensembles. Berkeley Division of Biostatistics Working Paper Series, vol. 174 (2005), http://www.bepress.com/ucbbiostat/paper174

  8. Kalbfleisch, J.D., Prentice, R.L.: The statistical analysis of failure time data. John Wiley & Sons, New York (1980)

    MATH  Google Scholar 

  9. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 5, 457–481 (1958)

    Article  MathSciNet  Google Scholar 

  10. Krȩtowska, M.: Dipolar regression trees in survival analysis. Biocybernetics and biomedical engineering 24(3), 25–33 (2004)

    Google Scholar 

  11. Krȩtowska, M., Bobrowski, L.: Artificial Neural Networks in Identifying Areas with Homogeneous Survival Time. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 1008–1013. Springer, Heidelberg (2004)

    Google Scholar 

  12. Krętowska, M.: Random Forest of Dipolar Trees for Survival Prediction. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 909–918. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Ridgeway, G.: The state of boosting. Computing Science and Statistics 31, 1722–1731 (1999)

    Google Scholar 

  14. Schemper, M.: Predictive accuracy and explained variation. Statistics in Medicine 22, 2299–2308 (2003)

    Article  Google Scholar 

  15. Schemper, M., Henderson, R.: Predictive accuracy and explained variation in Cox regression. Biometrics 56, 249–255 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Leszek Rutkowski Ryszard Tadeusiewicz Lotfi A. Zadeh Jacek M. Zurada

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krȩtowska, M. (2008). Ensemble of Dipolar Neural Networks in Application to Survival Data. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69731-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69572-1

  • Online ISBN: 978-3-540-69731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics