Abstract
We consider a multi-class pattern recognition problem with linearly ordered labels and a loss function, which measures absolute deviations of decisions from true classes. In the bayesian setting the optimal decision rule is shown to be the median of a posteriori class probabilities. Then, we propose three approaches to constructing an empirical decision rule, based on a learning sequence. Our starting point is the Parzen-Rosenblatt kernel density estimator. The second and the third approach are based on radial bases functions (RBF) nets estimators of class densities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bors, A.G., Pitas, I.: Median Radial Basis Function Neural Network. IEEE Trans. on Neural Networks I, 1351–1364 (1996)
Allwein, A., Schapire, R., Singer, Y.: Reducing multiclass to binary: A unifying approach for margin classifiers. J. Machine Learning Research 1, 113–141 (2000)
Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)
Chow, Y.S., Teicher, H.: Probability Theory. Springer, New York (1988)
Devroye, L., Györfi, L.: Nonparametric Density Estimation. The L 1 View. Wiley, New York (1985)
Devroye, L., Györfi, L., Lugosi, G.: Probabilistic Theory of Pattern Recognition. Springer, New York (1996)
Dietterich, T., Bakiri, G.: Solving Multiclass Learning Problems via Error-Correcting Output Codes. J. Artificial Intelligence Research 2, 263–286 (1995)
Greblicki, W., Pawlak, M.: Necessary and Sufficient Conditions for Bayes Risk Consistency of Recursive Kernel Classification Rule. IEEE Trans. Information Theory 33, 408–412 (1987)
Hastie, T., Tibshirani, R.: Classification by Pairwise Coupling. The Annals of Statistics 26, 451–471 (1998)
Karayiannis, N.B., Randolph-Gips, M.M.: On the Construction and Training of Reformulated Radial Basis Function Neural Networks. IEEE Trans. on Neural Networks 14, 835–846 (2003)
Krzyżak, A., Skubalska-Rafajłowicz, E.: Combining Space-Filling Curves and Radial Basis Function Networks. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 229–234. Springer, Heidelberg (2004)
Lugosi, G., Zeger, K.: Nonparametric Estimation via Empirical Risk Minimization. IEEE Trans. on Information Theory 41, 677–687 (1995)
Pawlak, M., Siu, D.: Classification with Noisy Features. Advances in Pattern Recognition 1451, 845–852 (1999)
Rafajłowicz, E.: RBF Nets in Faults Localization. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, Springer, Heidelberg (2006)
Rafajłowicz, E.: Improving the efficiency of counting defects by learning RBF nets with MAD loss. ICAISC 2008 (to appear)
Rafajłowicz, E., Pawla, M., Steland, A.: Nonlinear Image Filtering and Reconstruction: A Unified Approach Based on Vertically Weighted Regression. Int. J. Apll. Math. Comp. Sci (to appear, 2008)
Skubalska-Rafajłowicz, E.: Pattern Recognition Algorithms Based on Space-Filling Curves and Orthogonal Expansions. IEEE Trans. Information Theory 47, 1915–1927 (2001)
Skubalska-Rafajłowicz, E., Krzyżak, A.: Fast k-NN Classification Rule Using Metric on Space-Filling Curves. In: Proceedings of the 13th International Conference on Pattern Recognition, Vienna, vol. 2, pp. 121–125 (1996)
Skubalska-Rafajłowicz, E.: Data Compression for Pattern Recognition Based on Space-Filling Curve Pseudo-Inverse Mapping. Nonlinear Analysis, Theory, Methods and Applications 47, 315–326
Skubalska-Rafajłowicz, E.: RBF Neural Network for Probability Density Function Estimation and Detecting Changes in Multivariate Processes. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 133–141. Springer, Heidelberg (2006)
Skubalska-Rafajłowicz, E.: Local correlation and entropy maps as tools for detecting defects in industrial images. Int. J. Apll. Math. Comp. Sci (to appear, 2008)
Xu, L., Krzyżak, A., Yuille, A.: On Radial Basis Function Nets and Kernel Regression: Statistical Consistency, Convergence Rates and Receptive Field Size. Neural Networks 4, 609–628 (1994)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rafajłowicz, E., Skubalska-Rafajłowicz, E. (2008). MAD Loss in Pattern Recognition and RBF Learning. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_65
Download citation
DOI: https://doi.org/10.1007/978-3-540-69731-2_65
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69572-1
Online ISBN: 978-3-540-69731-2
eBook Packages: Computer ScienceComputer Science (R0)