Abstract
Evolutionary Algorithms (EAs) are common optimization techniques based on the concept of Darwinian evolution. During the search for the global optimum of a search space, a traditional EA will often become trapped in a local optimum. The Scouting-Inspired Evolutionary Algorithms (SEAs) are a recently–introduced family of EAs that use a cross–generational memory mechanism to overcome this problem and discover solutions of higher fitness. The merit of the SEAs has been established in previous work with a number of two and three-dimensional test cases and a variety of configurations. In this paper, we will present two approaches to using SEAs to solve high–dimensional problems. The first one involves the use of Locality Sensitive Hashing (LSH) for the repository of individuals, whereas the second approach entails the use of scouting–driven mutation at a certain rate, the Scouting Rate. We will show that an SEA significantly improves the equivalent simple EA configuration with higher–dimensional problems in an expeditious manner.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andoni, A.: Direct, unpublished correspondence (July 2007)
Andoni, A., Indyk, P.: E 2 LSH 0.1 User Manual, June 21 2005. MIT, Cambridge (2005)
Andoni, A., Indyk, P.: Near-optimal hashing algorithms for near neighbor problem in high dimensions. In: Proceedings of the Symposium on Foundations of Computer Science–FOCS 2006, pp. 459–468 (2006)
Bousmalis, K., Hayes, G.M., Pfaffmann, J.O.: Improving evolutionary algorithms with scouting. In: Neves, J., Santos, M.F., Machado, J.M. (eds.) EPIA 2007. LNCS (LNAI), vol. 4874, Springer, Heidelberg (2007)
Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Booth, M., Rossi, F.: GNU Scientific Library Reference Manual. Network Theory Ltd., Bristol (2003)
Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: Proceedings of the 25th International Conference on Very Large Data Bases, September 07-10 1999, pp. 518–529 (1999)
Liu, T., Moore, W., Gray, A., Yang, K.: An investigation of practical approximate nearest neighbor algorithms. In: Proceedings of Neural Information Processing Systems, pp. 825–832 (2004)
Lüscher, M.: A portable high-quality random number generator for lattice field theory calculations. In: Computer Physics Communications, vol. 79, pp. 1000–1110 (1994)
Datar, M., Indyk, P., Immorlica, N., Mirrokni, V.: Locality-sensitive hashing scheme based on p-stable distributions. In: Proceedings of the Symposium on Computational Geometry (2004)
Matsumaru, N., Colombano, S., Zauner, K.P.: Scouting enzyme behavior. In: Fogel, D.B., El-Sharkawi, M.A., Yao, X., Greenwood, G., Iba, H., Marrow, P., Shackleton, M. (eds.) 2002 World Congress on Computational Intelligence, Honolulu, Hawaii, 12-17 May 2002, pp. 19–24. IEEE, Piscataway (2002)
Matsumaru, N., Centler, F., Zuner, K.P., Dittrich, P.: Self-adaptive-scouting autonomous experimentation for systems biology. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 52–62. Springer, Heidelberg (2004)
Matsumoto, M., Nishimura, T.: Mersenne twister: A 6234-dimensionally equidistributed uniform pseudo-random number generator. In: ACM Transactions on Modeling and Computer Simulation, vol. 8, pp. 3–30 (1998)
Omohundro, S.M.: Five balltree construction algorithms, November 20 1989. International Computer Science Institute, Berkeley (1989)
Pfaffmann, J.O., Zauner, K.P.: Scouting context-sensitive components. In: Keymeulen, D., Stoica, A., Lohn, J., Zebulum, R.S. (eds.) The Third NASA/DoD Workshop on Evolvable Hardware-EH 2001, 12-14 July 2001, pp. 14–20. IEEE Computer Society, Los Alamitos (2001)
Pfaffmann, J.O., Bousmalis, K., Colombano, S.: A scouting-inspired evolutionary algorithm. In: Proceedings of the 2004 Congress on Evolutionary Computation–CEC 2004, Portland, OR, June 16-19, 2004, vol. 2, pp. 1706–1712 (2004)
Schmidt, M., Michalewicz, Z.: Test-case generator tcg-2 for nonlinear parameter optimization. In: Deb, K., Rudolph, G., Yao, X., Lutton, E., Guervos, J.J.M., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 539–548. Springer, Heidelberg (2000)
Uhlmann, J.K.: Satisfying general proximity/similarity queries with metric trees. In: Information Processing Letters, number 40, pp. 175–179 (November 1991)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bousmalis, K., Pfaffmann, J.O., Hayes, G.M. (2008). Improving Evolutionary Algorithms with Scouting: High–Dimensional Problems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_36
Download citation
DOI: https://doi.org/10.1007/978-3-540-69731-2_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69572-1
Online ISBN: 978-3-540-69731-2
eBook Packages: Computer ScienceComputer Science (R0)