Nothing Special   »   [go: up one dir, main page]

Skip to main content

Improving Evolutionary Algorithms with Scouting: High–Dimensional Problems

  • Conference paper
Artificial Intelligence and Soft Computing – ICAISC 2008 (ICAISC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5097))

Included in the following conference series:

  • 1638 Accesses

Abstract

Evolutionary Algorithms (EAs) are common optimization techniques based on the concept of Darwinian evolution. During the search for the global optimum of a search space, a traditional EA will often become trapped in a local optimum. The Scouting-Inspired Evolutionary Algorithms (SEAs) are a recently–introduced family of EAs that use a cross–generational memory mechanism to overcome this problem and discover solutions of higher fitness. The merit of the SEAs has been established in previous work with a number of two and three-dimensional test cases and a variety of configurations. In this paper, we will present two approaches to using SEAs to solve high–dimensional problems. The first one involves the use of Locality Sensitive Hashing (LSH) for the repository of individuals, whereas the second approach entails the use of scouting–driven mutation at a certain rate, the Scouting Rate. We will show that an SEA significantly improves the equivalent simple EA configuration with higher–dimensional problems in an expeditious manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andoni, A.: Direct, unpublished correspondence (July 2007)

    Google Scholar 

  2. Andoni, A., Indyk, P.: E 2 LSH 0.1 User Manual, June 21 2005. MIT, Cambridge (2005)

    Google Scholar 

  3. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for near neighbor problem in high dimensions. In: Proceedings of the Symposium on Foundations of Computer Science–FOCS 2006, pp. 459–468 (2006)

    Google Scholar 

  4. Bousmalis, K., Hayes, G.M., Pfaffmann, J.O.: Improving evolutionary algorithms with scouting. In: Neves, J., Santos, M.F., Machado, J.M. (eds.) EPIA 2007. LNCS (LNAI), vol. 4874, Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Booth, M., Rossi, F.: GNU Scientific Library Reference Manual. Network Theory Ltd., Bristol (2003)

    Google Scholar 

  6. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: Proceedings of the 25th International Conference on Very Large Data Bases, September 07-10 1999, pp. 518–529 (1999)

    Google Scholar 

  7. Liu, T., Moore, W., Gray, A., Yang, K.: An investigation of practical approximate nearest neighbor algorithms. In: Proceedings of Neural Information Processing Systems, pp. 825–832 (2004)

    Google Scholar 

  8. Lüscher, M.: A portable high-quality random number generator for lattice field theory calculations. In: Computer Physics Communications, vol. 79, pp. 1000–1110 (1994)

    Google Scholar 

  9. Datar, M., Indyk, P., Immorlica, N., Mirrokni, V.: Locality-sensitive hashing scheme based on p-stable distributions. In: Proceedings of the Symposium on Computational Geometry (2004)

    Google Scholar 

  10. Matsumaru, N., Colombano, S., Zauner, K.P.: Scouting enzyme behavior. In: Fogel, D.B., El-Sharkawi, M.A., Yao, X., Greenwood, G., Iba, H., Marrow, P., Shackleton, M. (eds.) 2002 World Congress on Computational Intelligence, Honolulu, Hawaii, 12-17 May 2002, pp. 19–24. IEEE, Piscataway (2002)

    Google Scholar 

  11. Matsumaru, N., Centler, F., Zuner, K.P., Dittrich, P.: Self-adaptive-scouting autonomous experimentation for systems biology. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 52–62. Springer, Heidelberg (2004)

    Google Scholar 

  12. Matsumoto, M., Nishimura, T.: Mersenne twister: A 6234-dimensionally equidistributed uniform pseudo-random number generator. In: ACM Transactions on Modeling and Computer Simulation, vol. 8, pp. 3–30 (1998)

    Google Scholar 

  13. Omohundro, S.M.: Five balltree construction algorithms, November 20 1989. International Computer Science Institute, Berkeley (1989)

    Google Scholar 

  14. Pfaffmann, J.O., Zauner, K.P.: Scouting context-sensitive components. In: Keymeulen, D., Stoica, A., Lohn, J., Zebulum, R.S. (eds.) The Third NASA/DoD Workshop on Evolvable Hardware-EH 2001, 12-14 July 2001, pp. 14–20. IEEE Computer Society, Los Alamitos (2001)

    Chapter  Google Scholar 

  15. Pfaffmann, J.O., Bousmalis, K., Colombano, S.: A scouting-inspired evolutionary algorithm. In: Proceedings of the 2004 Congress on Evolutionary Computation–CEC 2004, Portland, OR, June 16-19, 2004, vol. 2, pp. 1706–1712 (2004)

    Google Scholar 

  16. Schmidt, M., Michalewicz, Z.: Test-case generator tcg-2 for nonlinear parameter optimization. In: Deb, K., Rudolph, G., Yao, X., Lutton, E., Guervos, J.J.M., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 539–548. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Uhlmann, J.K.: Satisfying general proximity/similarity queries with metric trees. In: Information Processing Letters, number 40, pp. 175–179 (November 1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Leszek Rutkowski Ryszard Tadeusiewicz Lotfi A. Zadeh Jacek M. Zurada

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bousmalis, K., Pfaffmann, J.O., Hayes, G.M. (2008). Improving Evolutionary Algorithms with Scouting: High–Dimensional Problems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69731-2_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69572-1

  • Online ISBN: 978-3-540-69731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics