Nothing Special   »   [go: up one dir, main page]

Skip to main content

A General Framework for Increasing the Robustness of PCA-Based Correlation Clustering Algorithms

  • Conference paper
Scientific and Statistical Database Management (SSDBM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5069))

Abstract

Most correlation clustering algorithms rely on principal component analysis (PCA) as a correlation analysis tool. The correlation of each cluster is learned by applying PCA to a set of sample points. Since PCA is rather sensitive to outliers, if a small fraction of these points does not correspond to the correct correlation of the cluster, the algorithms are usually misled or even fail to detect the correct results. In this paper, we evaluate the influence of outliers on PCA and propose a general framework for increasing the robustness of PCA in order to determine the correct correlation of each cluster. We further show how our framework can be applied to PCA-based correlation clustering algorithms. A thorough experimental evaluation shows the benefit of our framework on several synthetic and real-world data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, C.C., Yu, P.S.: Finding generalized projected clusters in high dimensional space. In: Proc.SIGMOD (2000)

    Google Scholar 

  2. Böhm, C., Kailing, K., Kröger, P., Zimek, A.: Computing clusters of correlation connected objects. In: Proc.SIGMOD (2004)

    Google Scholar 

  3. Tung, A.K.H., Xu, X., Ooi, C.B.: CURLER: Finding and visualizing nonlinear correlated clusters. In: Proc.SIGMOD (2005)

    Google Scholar 

  4. Achtert, E., Böhm, C., Kröger, P., Zimek, A.: Mining hierarchies of correlation clusters. In: Proc.SSDBM (2006)

    Google Scholar 

  5. Achtert, E., Böhm, C., Kriegel, H.P., Kröger, P., Zimek, A.: Robust, complete, and efficient correlation clustering. In: Jonker, W., Petković, M. (eds.) SDM 2007. LNCS, vol. 4721. Springer, Heidelberg (2007)

    Google Scholar 

  6. Achtert, E., Böhm, C., Kriegel, H.P., Kröger, P., Zimek, A.: On exploring complex relationships of correlation clusters. In: Proc.SSDBM (2007)

    Google Scholar 

  7. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is nearest neighbor meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  8. Hinneburg, A., Aggarwal, C.C., Keim, D.A.: What is the nearest neighbor in high dimensional spaces? In: Proc.VLDB (2000)

    Google Scholar 

  9. Aggarwal, C.C., Hinneburg, A., Keim, D.: On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973. Springer, Heidelberg (2000)

    Google Scholar 

  10. Chakrabarti, K., Mehrotra, S.: Local dimensionality reduction: A new approach to indexing high dimensional spaces. In: Proc.VLDB (2000)

    Google Scholar 

  11. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc.KDD (1996)

    Google Scholar 

  12. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: Ordering points to identify the clustering structure. In: Proc.SIGMOD (1999)

    Google Scholar 

  13. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56, 89–113 (2004)

    Article  MATH  Google Scholar 

  14. Liebl, B., Nennstiel-Ratzel, U., von Kries, R., Fingerhut, R., Olgemöller, B., Zapf, A., Roscher, A.A.: Very high compliance in an expanded MS-MS-based newborn screening program despite written parental consent. Preventive Medicine 34(2), 127–131 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bertram Ludäscher Nikos Mamoulis

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kriegel, HP., Kröger, P., Schubert, E., Zimek, A. (2008). A General Framework for Increasing the Robustness of PCA-Based Correlation Clustering Algorithms. In: Ludäscher, B., Mamoulis, N. (eds) Scientific and Statistical Database Management. SSDBM 2008. Lecture Notes in Computer Science, vol 5069. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69497-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69497-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69476-2

  • Online ISBN: 978-3-540-69497-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics