Nothing Special   »   [go: up one dir, main page]

Skip to main content

ω-Degree Spectra

  • Conference paper
Logic and Theory of Algorithms (CiE 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5028))

Included in the following conference series:

Abstract

We present a notion of a degree spectrum of a structure with respect to countably many sets, based on the notion of ω-enumeration reducibility. We prove that some properties of the degree spectrum such as the minimal pair theorem and the existence of quasi-minimal degree are true for the ω-degree spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ash, C.J.: Generalizations of enumeration reducibility using recursive infinitary propositional senetences. Ann. Pure Appl. Logic 58, 173–184 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cooper, S.B.: Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ2 sets are dense. J. Symb. Logic 49, 503–513 (1984)

    MATH  Google Scholar 

  3. Cooper, S.B.: Computability Theory. Chapman & Hall/CRC, Boca Raton (2004)

    MATH  Google Scholar 

  4. Ganchev, H.: A jump inversion theorem for the infinite enumeration jump. Ann. Sofia Univ ( to appear, 2005)

    Google Scholar 

  5. Ganchev, H.: Exact Pair Theorem for the ω-Enumeration Degrees. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 316–324. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Richter, L.J.: Degrees of structures. J. Symb. Logic 46, 723–731 (1981)

    Article  MATH  Google Scholar 

  7. Soskov, I.N.: A jump inversion theorem for the enumeration jump. Arch. Math. Logic 39, 417–437 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Soskov, I.N.: Degree spectra and co-spectra of structures. Ann. Sofia Univ. 96, 45–68 (2004)

    MATH  MathSciNet  Google Scholar 

  9. Soskov, I.N., Baleva, V.: Ash’s theorem for abstract structures. In: Chatzidakis, Z., Koepke, P., Pohlers, W. (eds.) Proc. of Logic Colloquium 2002, Muenster, Germany, 2002. Lect. Notes in Logic, vol. 27, pp. 327–341. ASL (2006)

    Google Scholar 

  10. Soskov, I.N., Kovachev, B.: Uniform regular enumerations. Mathematical Structures in Comp. Sci. 16(5), 901–924 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Soskov, I.N.: The ω-enumeration degrees. J. Logic and Computation 17(6), 1193–1214 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Soskov, I.N., Ganchev, H.: The jump operator on the ω-enumeration degrees. Ann. Pure Appl. Logic (to appear)

    Google Scholar 

  13. Soskova, A.A.: Relativized degree spectra. J. Logic and Computation 17(6), 1215–1233 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Arnold Beckmann Costas Dimitracopoulos Benedikt Löwe

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Soskova, A.A. (2008). ω-Degree Spectra. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds) Logic and Theory of Algorithms. CiE 2008. Lecture Notes in Computer Science, vol 5028. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69407-6_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69407-6_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69405-2

  • Online ISBN: 978-3-540-69407-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics