Abstract
We present a notion of a degree spectrum of a structure with respect to countably many sets, based on the notion of ω-enumeration reducibility. We prove that some properties of the degree spectrum such as the minimal pair theorem and the existence of quasi-minimal degree are true for the ω-degree spectrum.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ash, C.J.: Generalizations of enumeration reducibility using recursive infinitary propositional senetences. Ann. Pure Appl. Logic 58, 173–184 (1992)
Cooper, S.B.: Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ2 sets are dense. J. Symb. Logic 49, 503–513 (1984)
Cooper, S.B.: Computability Theory. Chapman & Hall/CRC, Boca Raton (2004)
Ganchev, H.: A jump inversion theorem for the infinite enumeration jump. Ann. Sofia Univ ( to appear, 2005)
Ganchev, H.: Exact Pair Theorem for the ω-Enumeration Degrees. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 316–324. Springer, Heidelberg (2007)
Richter, L.J.: Degrees of structures. J. Symb. Logic 46, 723–731 (1981)
Soskov, I.N.: A jump inversion theorem for the enumeration jump. Arch. Math. Logic 39, 417–437 (2000)
Soskov, I.N.: Degree spectra and co-spectra of structures. Ann. Sofia Univ. 96, 45–68 (2004)
Soskov, I.N., Baleva, V.: Ash’s theorem for abstract structures. In: Chatzidakis, Z., Koepke, P., Pohlers, W. (eds.) Proc. of Logic Colloquium 2002, Muenster, Germany, 2002. Lect. Notes in Logic, vol. 27, pp. 327–341. ASL (2006)
Soskov, I.N., Kovachev, B.: Uniform regular enumerations. Mathematical Structures in Comp. Sci. 16(5), 901–924 (2006)
Soskov, I.N.: The ω-enumeration degrees. J. Logic and Computation 17(6), 1193–1214 (2007)
Soskov, I.N., Ganchev, H.: The jump operator on the ω-enumeration degrees. Ann. Pure Appl. Logic (to appear)
Soskova, A.A.: Relativized degree spectra. J. Logic and Computation 17(6), 1215–1233 (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Soskova, A.A. (2008). ω-Degree Spectra. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds) Logic and Theory of Algorithms. CiE 2008. Lecture Notes in Computer Science, vol 5028. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69407-6_58
Download citation
DOI: https://doi.org/10.1007/978-3-540-69407-6_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69405-2
Online ISBN: 978-3-540-69407-6
eBook Packages: Computer ScienceComputer Science (R0)