Nothing Special   »   [go: up one dir, main page]

Skip to main content

Efficient Tracking as Linear Program on Weak Binary Classifiers

  • Conference paper
Pattern Recognition (DAGM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5096))

Included in the following conference series:

  • 2328 Accesses

Abstract

This paper demonstrates how a simple, yet effective, set of features enables to integrate ensemble classifiers in optical flow based tracking. In particular, gray value differences of pixel pairs are used for generating binary weak classifiers, forming the respective object representation. For the tracking step an affine motion model is proposed. By using hinge loss functions, the motion estimation problem can be formulated as a linear program. Experiments demonstrate robustness of the proposed approach and include comparisons to conventional tracking methods.

This work has been sponsored by the Austrian Joint Research Project Cognitive Vision under projects S9103-N04 and S9104-N04.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avidan, S.: Support vector tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(8), 1064–1072 (2004)

    Article  Google Scholar 

  2. Avidan, S.: Ensemble tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(2), 261–271 (2007)

    Article  Google Scholar 

  3. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Dietterich, T.G.: Ensemble methods in machine learning. In: Proceedings International Workshop on Multiple Classifier Systems, pp. 1–15 (2000)

    Google Scholar 

  5. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Grabner, H., Bischof, H.: On-line boosting and vision. In: Proceedings Conference Computer Vision and Pattern Recognition, vol. 1, pp. 260–267 (2006)

    Google Scholar 

  7. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: Proceedings British Machine Vision Conference, vol. 1, pp. 47–56 (2006)

    Google Scholar 

  8. Jurie, F., Dhome, M.: A simple and efficient template matching algorithm. In: Proceedings International Conference on Computer Vision, vol. 2, pp. 544–549 (2001)

    Google Scholar 

  9. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: A new ensemble method for tracking concept drift. In: Proceedings International Conference on Data Mining, pp. 123–130 (2003)

    Google Scholar 

  10. Lepetit, V.: Keypoint recognition using randomized trees. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(9), 1465–1479 (2006)

    Article  Google Scholar 

  11. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Information and Computation 108(2), 212–261 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)

    Google Scholar 

  13. Matas, J., Hilton, A., Zimmermann, K., Svoboda, T.: Learning efficient linear predictors for motion estimation. In: Indien Conference on Computer Vision, Graphics and Image Processing, pp. 445–456 (2006)

    Google Scholar 

  14. Özuysal, M., Lepetit, V., Fleuret, F., Fua, P.: Feature harvesting for tracking-by-detection. In: Proceedings European Conference on Computer Vision, vol. 3, pp. 592–605 (2006)

    Google Scholar 

  15. Pele, O., Werman, M.: Robust real time pattern matching using bayesian sequential hypothesis testing. IEEE Transaction Pattern Analysis and Machine Intelligence (to appear, 2008)

    Google Scholar 

  16. Tian, M., Zhang, W., Liu, F.: On-line ensemble svm for robust object tracking. In: Proceedings Asian Conference on Computer Vision, pp. 355–364 (2007)

    Google Scholar 

  17. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings Conference Computer Vision and Pattern Recognition, vol. I, pp. 511–518 (2001)

    Google Scholar 

  18. Williams, O., Blake, A., Cipolla, R.: Sparse bayesian learning for efficient visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1292–1304 (2005)

    Article  Google Scholar 

  19. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Proceedings European Conference on Computer Vision, vol. 2, pp. 151–158 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerhard Rigoll

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grabner, M., Zach, C., Bischof, H. (2008). Efficient Tracking as Linear Program on Weak Binary Classifiers. In: Rigoll, G. (eds) Pattern Recognition. DAGM 2008. Lecture Notes in Computer Science, vol 5096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69321-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69321-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69320-8

  • Online ISBN: 978-3-540-69321-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics