Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Data Miner’s Approach to Country Corruption Analysis

  • Chapter
Intelligence and Security Informatics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 135))

  • 1100 Accesses

Abstract

Corruption is usually defined as the misuse of public office for private gain. Whereas the practice of corruption is probably as old as government itself, the recent emergence of more detailed measures has resulted in a considerable growth of empirical research on corruption. Furthermore, possible links between government corruption and terrorism have attracted an additional interest in this research field. Most of the existing literature discusses the topic from a socio-economical perspective and only few studies tackle research on corruption from a data mining point of view. In this chapter, we apply various data mining techniques onto a cross-country database linking macro-economical variables to perceived levels of corruption. In the first part, self organizing maps are applied to study the interconnections between these variables. Afterwards, various predictive models are trained on part of the data and used to forecast corruption for other countries. Large deviations for specific countries between these models’ predictions and the actual values can prove useful for further research. Finally, projection of the forecasts onto a self organizing map allows a detailed comparison between the different models’ behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alesina, A., Weder, B.: Do corrupt governments receive less foreign aid? National Bureau of Economic Research Working Paper 7108 (1999)

    Google Scholar 

  2. Azcarraga, A., Hsieh, M., Pan, S., Setiono, R.: Extracting salient dimensions for automatic SOM labeling. Transactions on Systems, Management and Cybernetics, Part C 35(4), 595–600 (2005)

    Article  Google Scholar 

  3. Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., Vanthienen, J.: Benchmarking state of the art classification algorithms for credit scoring. Journal of the Operational Research Society 54(6), 627–635 (2003)

    Article  MATH  Google Scholar 

  4. Bohara, A., Mitchell, N., Mittendorff, C.: Compound democracy and the control of corruption: A cross-country investigation. The Policy Studies Journal 32(4), 481–499 (2004)

    Article  Google Scholar 

  5. Breiman, L., Friedman, J.H., Olsen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth and Brooks (1984)

    Google Scholar 

  6. Brockett, P.L., Xia, X., Derrig, R.: Using Kohonen’s self-organizing feature map to uncover automobile bodily injury claims fraud. International Journal of Risk and Insurance 65, 245–274 (1998)

    Article  Google Scholar 

  7. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)

    Article  Google Scholar 

  8. CIA Factbook, retrieved from http://www.cia.gov/cia/publications/factbook/

  9. De Brabanter, J.: LS-SVM Regression Modelling and its Applications. Ph.D. the-sis, Katholieke Universiteit Leuven, Faculty of Engineering (2004)

    Google Scholar 

  10. Deboeck, G., Kohonen, T.: Visual Explorations in Finance with Self Organizing maps. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  11. Freedom House, Freedom in the world country ratings (2005), retrieved from http://www.freedomhouse.org

  12. Gerring, J., Thacker, S.: Political institutions and corruption: The role of unitarism and parliamentarism. The British Journal of Political Science 34, 295–330 (2004)

    Article  Google Scholar 

  13. Honkela, T., Kaski, S., Lagus, K., Kohonen, T.: WEBSOM-Self-Organizing Maps of Document Collections. In: Proceedings of WSOM 1997, Workshop on Self-Organizing Maps, Espoo, Finland, Helsinki University of Technology, pp. 310–315 (1997)

    Google Scholar 

  14. Karalic, A.: Linear regression in regression tree leaves. In: ISSEK 1992 (International School for Synthesis of Expert Knowledge), pp. 151–163 (1992)

    Google Scholar 

  15. Kohavi, R., Quinlan, J.R.: Decision-tree discovery. In: Klosgen, W., Zytkow, J. (eds.) Handbook of Data Mining and Knowledge Discovery, pp. 267–276. Oxford University Press, Oxford (2002)

    Google Scholar 

  16. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics 43, 59–69 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kohonen, T.: Self-Organising Maps. Springer, Heidelberg (1995)

    Google Scholar 

  18. Lagus, K., Kaski, S.: Keyword selection method for characterizing text document maps. In: Proceedings of ICANN 1999, Ninth International Conference on Artificial Neural Networks, pp. 371–376 (1999)

    Google Scholar 

  19. Lambsdorff, J.: Corruption in empirical research: a review. Transparency International Working paper (1999)

    Google Scholar 

  20. Leite, C., Weidmann, J.: Does mother nature corrupt? natural resources, corruption and economical growth. International Monetary Fund Working Paper 99/85 (1999)

    Google Scholar 

  21. Mauro, P.: Corruption and growth. The Quarterly Journal of Economics 110(3), 681–712 (1995)

    Article  Google Scholar 

  22. Montinola, G., Jackman, R.: Sources of corruption: a cross-country study. British Journal of Political Science 32, 147–170 (2002)

    Article  Google Scholar 

  23. Rauber, A., Merkl, D.: Automatic labeling of self-organizing maps: Making a treasure-map reveal its secrets. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 228–237. Springer, Heidelberg (1999)

    Google Scholar 

  24. Seldadyo, H., de Haan, J.: The determinants of corruption: a literature survey and new evidence. In: EPCS 2006 Conference (2006)

    Google Scholar 

  25. Smola, A., Schölkopf, B.: A tutorial on support vector regression. Statistics and Computing 14, 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  26. Suykens, J., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific, Singapore (2002)

    MATH  Google Scholar 

  27. Swamy, A., Knack, S., Lee, Y., Azfar, O.: Gender and corruption. Journal of Development Economics 64, 25–55 (2001)

    Article  Google Scholar 

  28. Transparency International. Corruption Perceptions Index, retrieved from http://www.transparency.org/

  29. Treisman, D.: The causes of corruption: a cross-national study. Journal of Public Economics 76(3), 339–457 (2000)

    Article  Google Scholar 

  30. Vapnik, V.N.: The nature of statistical learning theory. Springer, New York (1995)

    MATH  Google Scholar 

  31. Vesanto, J.: Som-based data visualization methods. Intelligent Data Analysis 3, 111–126 (1999)

    Article  MATH  Google Scholar 

  32. Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Transactions on Neural Networks 11(3), 586–600 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hsinchun Chen Christopher C. Yang

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huysmans, J., Baesens, B., Vanthienen, J. (2008). A Data Miner’s Approach to Country Corruption Analysis. In: Chen, H., Yang, C.C. (eds) Intelligence and Security Informatics. Studies in Computational Intelligence, vol 135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69209-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69209-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69207-2

  • Online ISBN: 978-3-540-69209-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics