Abstract
Two methods for retrieval relevance optimization using the user’s feedback is proposed for a content-based image retrieval (CBIR) system. First, the feature space used in database image clustering for coarse classification is transferred to a preference feature space according to the user’s feedback by a map generated by supervised training, thereby enabling to collect user-preferred images in the matching candidates. Second, the parameters in the fine-matching relaxation operation is optimized according to the user’s evaluation of the retrieved image ranking using Particle Swarm Optimization. In the experiments, it is shown that the retrieval rankings are improved suiting the user’s preference when feature space mapping and parameter optimization are used.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kato, T., Kurita, T., Shimogaki, H.: Intelligent visual interaction with image database systems - toward the multimedia personal interface. Journal of Information Processing 41(2), 134–143 (1991)
Niblack, W., Barber, R., Equitz, W., Flickner, M.D., Glasman, E.H., Petkovic, D., Yanker, P., Faloutsos, C., Taubin, G.: QBIC project: querying images by content, using color, texture, and shape. In: SPIE Proceedings, vol. 1908, pp. 173–187 (1993)
Pentland, A., Picard, R.W., Sclaroff, S.: Photobook: Tools for content-based manipulation of image databases. International Journal of Computer Vision 18(3), 233–254 (1996)
Squire, D.M., Müller, W., Müller, H., Pun, T.: Content-based query of image databases: inspirations from text retrieval. Pattern Recognition Letters 21, 1193–1198 (2000)
Kameyama, K., Oka, N., Toraichi, K.: Optimal parameter selection in image similarity evaluation algorithms using particle swarm optimization. In: Proceedings of IEEE Congress of Evolutionary Computation, World Congress of Computational Intelligence 2006, pp. 3824–3831 (2006)
Yamamoto, K.: Recognition of handprinted kanji characters by relaxation matching. IECE Trans. J65-D(9), 1167–1174 (1982)
Kwan, P.W.H., Kameyama, K., Toraichi, K.: Trademark retrieval by relaxation matching on fluency function approximated image contours. In: Proceedings of IEEE Pacific Rim Conference on Communication, Computer and Signal Processing, pp. 255–258 (2001)
Katayama, N., Satoh, S.: The SR-tree: An index structure for high-dimensional nearest neighbor queries. In: Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data, pp. 369–380 (1997)
Rosenfeld, A., Hummel, R.A., Zucker, S.W.: Scene labeling by relaxation operations. IEEE Trans. Sys., Man and Cybern. SMC-6(6), 420–433 (1976)
Pelillo, M.: On the dynamics of relaxation labeling processes. In: Proc. IEEE Int’l. Conf. on Neural Networks, vol. 2, pp. 1006–1011 (1994)
Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Heidelberg (2006)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Okayama, M., Oka, N., Kameyama, K. (2008). Relevance Optimization in Image Database Using Feature Space Preference Mapping and Particle Swarm Optimization. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4985. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69162-4_63
Download citation
DOI: https://doi.org/10.1007/978-3-540-69162-4_63
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69159-4
Online ISBN: 978-3-540-69162-4
eBook Packages: Computer ScienceComputer Science (R0)