Nothing Special   »   [go: up one dir, main page]

Skip to main content

Convex Hull of Arithmetic Automata

  • Conference paper
Static Analysis (SAS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5079))

Included in the following conference series:

  • 538 Accesses

Abstract

Arithmetic automata recognize infinite words of digits denoting decompositions of real and integer vectors. These automata are known expressive and efficient enough to represent the whole set of solutions of complex linear constraints combining both integral and real variables. In this paper, the closed convex hull of arithmetic automata is proved rational polyhedral. Moreover an algorithm computing the linear constraints defining these convex set is provided. Such an algorithm is useful for effectively extracting geometrical properties of the whole set of solutions of complex constraints symbolically represented by arithmetic automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Becker, B., Dax, C., Eisinger, J., Klaedtke, F.: Lira: Handling constraints of linear arithmetics over the integers and the reals. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 307–310. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Boigelot, B., Herbreteau, F.: The power of hybrid acceleration. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 438–451. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for linear arithmetic over the integers and reals. ACM Trans. Comput. Log. 6(3), 614–633 (2005)

    Article  MathSciNet  Google Scholar 

  4. Bardin, S., Leroux, J., Point, G.: Fast extended release. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 63–66. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Boigelot, B., Rassart, S., Wolper, P.: On the expressiveness of real and integer arithmetic automata (extended abstract). In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 152–163. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Finkel, A., Leroux, J.: The convex hull of a regular set of integer vectors is polyhedral and effectively computable. Information Processing Letter 96(1), 30–35 (2005)

    Article  MathSciNet  Google Scholar 

  7. Karr, M.: Affine relationships among variables of a program. Acta Informatica 6, 133–151 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  8. Latour, L.: From automata to formulas: Convex integer polyhedra. In: 19th IEEE Symposium on Logic in Computer Science (LICS 2004), Turku, Finland, July 14-17, 2004, pp. 120–129. IEEE Computer Society, Los Alamitos (2004)

    Chapter  Google Scholar 

  9. Leroux, J.: The affine hull of a binary automaton is computable in polynomial time. In: Verification of Infinite State Systems, 5th International Workshop, INFINITY 2003, Marseille, France, September 2, 2003, vol. 98, pp. 89–104. Elsevier, Amsterdam (2003)

    Google Scholar 

  10. Leroux, J.: A polynomial time presburger criterion and synthesis for number decision diagrams. In: 20th IEEE Symposium on Logic in Computer Science (LICS 2005), Chicago, IL, USA, June 26-29, 2005, pp. 147–156. IEEE Computer Society, Los Alamitos (2005)

    Chapter  Google Scholar 

  11. Leroux, J., Point, G.: TaPAS: The Talence Presburger Arithmetic Suite (submited, 2008)

    Google Scholar 

  12. Leroux, J., Sutre, G.: Accelerated data-flow analysis. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Leroux, J., Sutre, G.: Acceleration in convex data-flow analysis. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 520–531. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Lugiez, D.: From automata to semilinear sets: A logical solution for sets L(C, P). In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. D. Lugiez, vol. 3317, pp. 321–322. Springer, Heidelberg (2005)

    Google Scholar 

  15. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley and Sons, New York (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

María Alpuente Germán Vidal

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leroux, J. (2008). Convex Hull of Arithmetic Automata. In: Alpuente, M., Vidal, G. (eds) Static Analysis. SAS 2008. Lecture Notes in Computer Science, vol 5079. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69166-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69166-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69163-1

  • Online ISBN: 978-3-540-69166-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics