Abstract
Arithmetic automata recognize infinite words of digits denoting decompositions of real and integer vectors. These automata are known expressive and efficient enough to represent the whole set of solutions of complex linear constraints combining both integral and real variables. In this paper, the closed convex hull of arithmetic automata is proved rational polyhedral. Moreover an algorithm computing the linear constraints defining these convex set is provided. Such an algorithm is useful for effectively extracting geometrical properties of the whole set of solutions of complex constraints symbolically represented by arithmetic automata.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Becker, B., Dax, C., Eisinger, J., Klaedtke, F.: Lira: Handling constraints of linear arithmetics over the integers and the reals. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 307–310. Springer, Heidelberg (2007)
Boigelot, B., Herbreteau, F.: The power of hybrid acceleration. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 438–451. Springer, Heidelberg (2006)
Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for linear arithmetic over the integers and reals. ACM Trans. Comput. Log. 6(3), 614–633 (2005)
Bardin, S., Leroux, J., Point, G.: Fast extended release. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 63–66. Springer, Heidelberg (2006)
Boigelot, B., Rassart, S., Wolper, P.: On the expressiveness of real and integer arithmetic automata (extended abstract). In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 152–163. Springer, Heidelberg (1998)
Finkel, A., Leroux, J.: The convex hull of a regular set of integer vectors is polyhedral and effectively computable. Information Processing Letter 96(1), 30–35 (2005)
Karr, M.: Affine relationships among variables of a program. Acta Informatica 6, 133–151 (1976)
Latour, L.: From automata to formulas: Convex integer polyhedra. In: 19th IEEE Symposium on Logic in Computer Science (LICS 2004), Turku, Finland, July 14-17, 2004, pp. 120–129. IEEE Computer Society, Los Alamitos (2004)
Leroux, J.: The affine hull of a binary automaton is computable in polynomial time. In: Verification of Infinite State Systems, 5th International Workshop, INFINITY 2003, Marseille, France, September 2, 2003, vol. 98, pp. 89–104. Elsevier, Amsterdam (2003)
Leroux, J.: A polynomial time presburger criterion and synthesis for number decision diagrams. In: 20th IEEE Symposium on Logic in Computer Science (LICS 2005), Chicago, IL, USA, June 26-29, 2005, pp. 147–156. IEEE Computer Society, Los Alamitos (2005)
Leroux, J., Point, G.: TaPAS: The Talence Presburger Arithmetic Suite (submited, 2008)
Leroux, J., Sutre, G.: Accelerated data-flow analysis. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, Springer, Heidelberg (2007)
Leroux, J., Sutre, G.: Acceleration in convex data-flow analysis. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 520–531. Springer, Heidelberg (2007)
Lugiez, D.: From automata to semilinear sets: A logical solution for sets L(C, P). In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. D. Lugiez, vol. 3317, pp. 321–322. Springer, Heidelberg (2005)
Schrijver, A.: Theory of Linear and Integer Programming. John Wiley and Sons, New York (1987)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Leroux, J. (2008). Convex Hull of Arithmetic Automata. In: Alpuente, M., Vidal, G. (eds) Static Analysis. SAS 2008. Lecture Notes in Computer Science, vol 5079. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69166-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-69166-2_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69163-1
Online ISBN: 978-3-540-69166-2
eBook Packages: Computer ScienceComputer Science (R0)