Nothing Special   »   [go: up one dir, main page]

Skip to main content

Disjunctive Cuts for Non-convex Mixed Integer Quadratically Constrained Programs

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5035))

Abstract

This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non-convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-and-project methodology. In particular, we propose new methods for generating valid inequalities by using the equation Y = x x T. We use the concave constraint \( 0 \succcurlyeq Y - x x^T \) to derive disjunctions of two types. The first ones are directly derived from the eigenvectors of the matrix Y − x x T with positive eigenvalues, the second type of disjunctions are obtained by combining several eigenvectors in order to minimize the width of the disjunction. We also use the convex SDP constraint \( Y - x x^T \succcurlyeq 0\) to derive convex quadratic cuts and combine both approaches in a cutting plane algorithm. We present preliminary computational results to illustrate our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anstreicher, K.M.: Semidefinite Programming versus the Reformulation-Linearization Technique for Nonconvex Quadratically Constrained Quadratic Programming. Preprint. Optimization Online (May 2007)

    Google Scholar 

  2. Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Disc. Appl. Math. 89(1-3), 3–44 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0-1 programs. Math. Program. 58, 295–324 (1993)

    Article  Google Scholar 

  4. Balas, E., Saxena, A.: Optimizing over the split closure. MSRR# 674, Tepper School of Business, Carnegie Mellon Univ., Math. Program. A (to appear, 2005)

    Google Scholar 

  5. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An Algorithmic Framework for Convex Mixed-integer Nonlinear Programs. Discrete Optimization (in press)

    Google Scholar 

  6. Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Programming (to appear)

    Google Scholar 

  7. Cornuéjols, G.: Revival of the Gomory cuts in the 1990’s. Annals of Operations Research 149(1), 63–66 (2007)

    Article  MathSciNet  Google Scholar 

  8. Fischetti, M., Lodi, A.: Optimizing over the first Chvatal closure. Mathematical Programming (to appear)

    Google Scholar 

  9. Fletcher, R., Leyffer, S.: User Manual for FilterSQP. Numerical Analysis Report NA/181, Dundee University (1998)

    Google Scholar 

  10. Jeroslow, R.G.: There cannot be any algorithm for integer programming with quadratic constraints. Operations Research 21(1), 221–224 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. GLOBALLib, http://www.gamsworld.org/global/globallib/globalstat.htm

  12. Lee, S., Grossmann, I.E.: A global optimization algorithm for nonconvex generalized disjunctive programming and applications to process systems. Computers and Chemical Engineering 25, 1675–1697 (2001)

    Article  Google Scholar 

  13. Kim, S., Kojima, M.: Second order cone programming relaxation of nonconvex quadratic optimization problems. Optim. Methods and Software 15, 201–204 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part I Convex underestimating problems. Math. Prog. 10, 147–175 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nowak, I., Alperin, H., Vigerske, S.: LaGO - An object oriented library for solving MINLPs. In: Bliek, C., et al. (eds.) Global Optimization and Constraint Satisfaction, pp. 32–42. Springer, Berlin (2003)

    Google Scholar 

  16. Nowak, I.: Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming. Birkhauser, Basel (2005)

    MATH  Google Scholar 

  17. Vigerske, S.: http://projects.coin-or.org/LaGO

  18. Saxena, A., Goyal, V., Lejeune, M.: MIP Reformulations of the Probabilistic Set Covering Problem (2007) Optmization Online (e-print), http://www.optimization-online.org/DB_HTML//02/1579.html

  19. Sen, S.: Relaxations for probabilistically constrained programs with discrete random variables. Operations Research Letters 11(2), 81–86 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sherali, H.D., Adams, W.P.: A reformulation-linearization technique for solving discrete and continuous nonconvex problems. Kluwer, Dordecht (1998)

    Google Scholar 

  21. Sherali, H.D., Fraticelli, B.M.P.: Enhancing RLT relaxations via a new class of semidefinite cuts. J. Global Optim. 22, 233–261 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods and Software 11-12, 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  23. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer Academic Publishers, Boston (2002)

    MATH  Google Scholar 

  24. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed integer nonlinear programs: A theoretical and computational study. Math. Prog. 99(3), 563–591 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vandenbussche, D., Nemhauser, G.L.: A polyhedral study of nonconvex quadratic programs with box constraints. Math. Prog. 102(3), 531–556 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vandenbussche, D., Nemhauser, G.L.: A branch-and-cut algorithm for nonconvex quadratic programs with box constraints. Math. Prog. 102(3), 559–575 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Prog. 106(1), 25–57 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andrea Lodi Alessandro Panconesi Giovanni Rinaldi

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saxena, A., Bonami, P., Lee, J. (2008). Disjunctive Cuts for Non-convex Mixed Integer Quadratically Constrained Programs. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds) Integer Programming and Combinatorial Optimization. IPCO 2008. Lecture Notes in Computer Science, vol 5035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68891-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68891-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68886-0

  • Online ISBN: 978-3-540-68891-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics