Nothing Special   »   [go: up one dir, main page]

Skip to main content

Remote sensing of gas emissions from volcanoes

  • Chapter
  • First Online:
Monitoring Volcanoes in the North Pacific

Part of the book series: Springer Praxis Books ((GEOPHYS))

Abstract

There are many good reasons to study and observe gaseous emissions from volcanoes. Quantitative measurements provide insights into volcanic processes occurring deep within a volcano, at more shallow levels where gases exsolve from magma and escape via fissures and cracks, into eruption processes at the surface and within the atmosphere. Emission rate monitoring of reawakening volcanoes helps constrain forecasts of eruption timing and magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ackerman, S.A.; Schreiner, A.J.; Schmit, T.J.; Woolf, H.M.; Li, J.; Pavolonis, M. (2008). Using the GOES sounder to monitor upper level SO2 from volcanic eruptions, J. Geophys. Res., 113, D14S11, doi: 10.1029/2007JD009622.

  • Afe, O.T.; Richter, A.; Sierk, B.; Wittrock, F.; Burrows, J.P. (2004). BrO emission from volcanoes: A survey using GOME and SCIAMACHY measurements, Geophys. Res. Lett, 31, L24113, doi: 10.1029/ 2004GL020994.

    Google Scholar 

  • Allard, P.; Carbonnelle, J.; Dajlevic, D.; Le Bronec, J.; Morel, P.; Robe, M.C.; Maurenas, J.M.; Faivre-Pierret, R.; Martin, D.; Sabroux, J.C.; Zettwoog, P. (1991). Eruptive and diffuse emissions of CO2 from Mount Etna, Nature, 351, 387-391.

    Google Scholar 

  • Allen, A.G.; Baxter, P.J.; Ottley, C.J. (2000). Gas and particle emissions from Soufrière Hills volcano, Montserrat, West Indies: Characterization and health hazard assessment, Bull. Volcanol., 62, 8-19.

    Google Scholar 

  • Andres, R.J.; Kasgnoc, A.D. (1998). A time-averaged inventory of subaerial volcanic sulfur emissions, J. Geophys. Res, 103(D19), 25251-25261.

    Google Scholar 

  • Bandy, A.R.; Maroulis, P.J.; Wilner, L.A.; Torres, A.L. (1982). Estimates of the fluxes of NO, SO2, H2S, CS2, and OCS from Mt. St. Helens deduced from in situ plume concentration measurements, Geophys. Res. Lett, 9, 1097-1100.

    Google Scholar 

  • Belviso, S.; Nguyen, B.C.; Allard, P. (1986). Estimate of carbonyl sulfide (OCS) volcanic source strength deduced from OCS/CO2 ratios in volcanic gases, Geophys. Res. Lett, 13(2), 133-136, doi: 10.1029/ GL013i002p00133.

    Google Scholar 

  • Berresheim, H.; Jaeschke, W. (1983). The contribution of volcanoes to the global atmospheric sulfur budget, J. Geophys. Res, 88, 3732-3740.

    Google Scholar 

  • Bluth, G.J.S.; Doiron, S.D.; Schnetzler, C.C.; Krueger, A.J.; Walter, L.S. (1992). Global tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruptions, Geophys. Res. Lett., 19, 151-154.

    Google Scholar 

  • Bluth, G.J.S.; Schnetzler, C.C.; Krueger, A.J.; Walter, L.S. (1993). The contribution of explosive volcanism to global sulphur dioxide concentrations, Nature, 366, 327-329.

    Google Scholar 

  • Bluth, G.J.S.; Scott, C.J.; Sprod, I.E.; Schnetzler, C.C.; Krueger, A.J.; Walter, L.S. (1995). Explosive SO2 emissions from the 1992 eruptions of Mount Spurr, Alaska, U.S. Geological Survey Bulletin, 2139, 37-45.

    Google Scholar 

  • Bluth, G.J.S.; Rose, W.I.; Sprod, I.E.; Krueger, A.J. (1997). Stratospheric loading of sulfur from explosive volcanic eruptions, J. Geol., 105, 671-684.

    Google Scholar 

  • Bluth, G.J.S.; Shannon, J.M.; Watson, I.M.; Prata, A.J.; Realmuto, V.J. (2007). Development of an ultraviolet digital camera for volcanic SO2 imaging, J. Volcanol. Geothermal Res., 161(1/2), 47-56, doi: 10.1016/j.volgeores.2006.11.004.

  • Bobrowski, N.; Honninger, G.; Galle, B.; Platt, U. (2003). Detection of bromine monoxide in a volcanic plume, Nature, 423, 273-276.

    Google Scholar 

  • Bovensmann, H.; Burrows, J.P.; Buchwitz, M.; Frerick, J.; Noël, S.; Rozanov, V.V.; Chance, K.V.; Goede, A.P.H. (1999). SCIAMACHY: Mission objectives and measurement modes, J. Atmos. Sci., 56, 127-150, doi: 10.1175/1520-0469(1999)056< 0127:SMOAMM>2.0.CO;2.

  • Burrows, J.P.; Weber, M.; Buchwitz, M.; Rozanov, V.; Ladstätter-Weißenmayer, A.; Richter, A.; DeBeek, R.; Hoogen, R.; Branstedt, K.; Eichmann, K.-U.; Eisinger, M.; Perner, D. (1999). The Global Ozone Monitoring Experiment (GOME): Mission concept and first scientific results, J. Atmos. Sci., 56,151-175, doi: 10.1175/1520-0469(1999)056<0515:TGOMEG >2.0.CO;2.

  • Burton, M.R.; Oppenheimer, C.; Horrocks, L.A.; Francis, P.W. (2000). Remote sensing of CO2 and H2O emission rates from Masaya volcano, Nicaragua, Geology, 28(10), 915-918, doi: 10.1130/0091-7613.

  • Cadle, R.D. (1975). Volcanic emissions of halides and sulfur compounds to the troposphere and stratosphere, J. Geophys. Res., 80, 1650-1652.

    Google Scholar 

  • Cadle, R.D. (1980). A comparison of volcanic with other fluxes of atmospheric trace gas constituents, Rev. Geophys. Space Phys, 18(4), 746-752.

    Google Scholar 

  • Cambaliza, M.O.; Mount, G.; Lamb, B.; Westberg, H.; Gibson R. (2005). Measurement of Ecosystem-Atmosphere Exchange of Isotopic CO 2 using Fourier Transform Infrared (FTIR) Spectroscopy, American Geophysical Union, Washington, D.C., Fall Meeting Abstracts.

    Google Scholar 

  • Campion, R.; Salerno, G.G.; Coheur, P.-F.; Hurtmans, D.; Clarisse, L.; Kazahaya, K.; Burton, M.; Calta-biano, T.; Clerbaux, C.; Bernard, A. (2010). Measuring volcanic degassing of SO2 in the lower troposphere with Aster band ratios, J. Volcanol. Geotherm. Res., 194, 42-54, doi: 10.1016/j. jvolgeores.2010.04.010.

    Google Scholar 

  • Carn, S.A.; Bluth, G.J.S. (2003). Prodigious sulfur dioxide emissions from Nyamuragira volcano, D.R. Congo, Geophys. Res. Lett., 30(23), 2211, doi: 10.1029/2003GL018465.

  • Carn, S.A.; Krueger, A.J.; Bluth, G.J.S., Schaefer, S.J.; Krotkov, N.A.; Watson, I.M.; Datta, S. (2003). Volcanic eruption detection by the Total Ozone Mapping Spectrometer (TOMS) instruments: A 22-year record of sulfur dioxide and ash emissions, in C. Oppenheimer, D.M. Pyle, and J. Barclay (Eds.), Volcanic Degassing, Special Publication 213, Geological Society, London, pp. 177-202.

    Google Scholar 

  • Carn, S.A.; Krueger, A.J.; Krotkov, N.A.; Gray, M.A. (2004). Fire at Iraqi sulfur plant emits SO2 clouds detected by Earth Probe TOMS, Geophys. Res. Lett., 31(19), L19105, doi: 10.1029/2004GL020719.

  • Carn, S.A.; Strow, L.L.; de Souza-Machado, S.; Edmonds, Y.; Hannon S. (2005). Quantifying tropospheric volcanic emissions with AIRS: The 2002 eruption of Mt. Etna (Italy), Geophys. Res. Lett., 32.

    Google Scholar 

  • Carn, S.A.; Krotkov, N.A.; Yang, K.; Hoff, R.M.; Prata, A.J.; Krueger, A.J.; Loughlin, S.C.; Levelt, P.F. (2007a). Extended observations of volcanic SO2 and sulphate aerosol in the stratosphere, Atmos. Chem. Phys. Discuss., 7, 2857-2871.

    Google Scholar 

  • Carn, S.A.; Krueger, A.J.; Krotkov, N.A.; Yang, K.; Levelt, P.F. (2007b). Sulfur dioxide emissions from Peruvian copper smelters detected by the Ozone Monitoring Instrument, Geophys. Res. Lett., 34, L09801, doi: 10.1029/2006GL029020.

  • Carn, S.A.; Pallister, J.S.; Lara, L.; Ewert, J.W.; Watt, S.; Prata, A.J.; Thomas, R.J.; Villarosa, G. (2009). The unexpected awakening of Chaitén Volcano, Chile, EOS, Transactions American Geophysical Union, 90(24), 205, doi: 10.1029/2009EO240001.

  • Casadevall, T.J.; Doukas, M.P.; Neal, C.A.; McGimsey, R.G.; Gardner, C.A. (1994). Emission rates of sulfur dioxide and carbon dioxide from Redoubt Volcano, Alaska during the 1989-1990 eruptions, J. Volcanol. Geothermal Res., 62, 519-530.

    Google Scholar 

  • Chahine, M.T.; Pagano, T.S.; Aumann, H.H.; Atlas, R.; Barnet, C.; Blaisdell, J.; Chen, L.; Divakarla, M.; Fetzer, E.J.; Goldberg, M. et al. (2006). AIRS: Improving weather forecasting and providing new data on greenhouse gases, Bull. Amer. Meteorol. Soc., 87(7), 911-926, http://hdl.handle.net/2014/40298.

    Google Scholar 

  • Chance, K. (Ed.) (2002). OMI Algorithm Theoretical Basis Document (Volume IV): OMI Trace Gas Algorithms, ATBD-OMI-04, Version 2.0, 78 pp, available at http://www.knmi.nl/omi/research/documents/algorithm_docs.html

    Google Scholar 

  • Crowley, T.J. (2000). Causes of climate change over the past 1000 years, Science, 289, 270-277.

    Google Scholar 

  • Delmelle, P.; Stix, J. (2000). Volcanic gases, in H. Sigurdsson, B.F. Houghton, S.R. McNutt, H. Rymer, and J. Stix (Eds.), Encyclopedia of Volcanoes, Academic Press, San Diego, CA, pp. 803-816.

    Google Scholar 

  • Delmelle, P.; Stix, J.; Baxter, P.J.; Garcia-Alvarez, J.; Barquero, J. (2002). Atmospheric dispersion, environmental effects and potential health hazard associated with the low-altitude gas plume of Masaya volcano, Nicaragua, Bull Volcanol., 64(6), 423-434.

    Google Scholar 

  • Doukas, M.P. (2002). A New Method for GPS-based Wind Speed Determinations during Airborne Volcanic Plume Measurements, USGS Open-File Report 02395, U.S. Geological Survey, Reston, VA, 13 pp.

    Google Scholar 

  • Doukas, M.P. (1995). A Compilation of Sulfur Dioxide and Carbon Dioxide Emission-rate Data from Cook Inlet Volcanoes (Redoubt, Spurr, Iliamna, and Augustine), Alaska during the Period from 1990 to 1994, USGS Open-File Report 95-55, U.S. Geological Survey, Reston, VA, 15 pp.

    Google Scholar 

  • Duffell, H.; Oppenheimer, C.; Burton, M. (2001). Volcanic gas emission rates measured by solar occulta- tion spectroscopy, Geophys. Res. Lett., 28(16), 31313134.

    Google Scholar 

  • Edmonds, M.; Herd, R.A.; Galle, B.; Oppenheimer, C.M. (2003). Automated, high time-resolution measurements of SO2 flux at Soufrière Hills volcano, Mont- serrat, Bull. Volcanol., 65, 578-586, doi: 10.1007/ x00445-003-0286-x.

    Google Scholar 

  • Edwards, D.P. (1992). GENLN2: A General Line-by-line Atmospheric Transmittance and Radiance Model—Version 3.0, Description and User’s Guide (NCAR Technical Note, NCAR/TN-367 + STR), National Center for Atmospheric Research, Boulder, CO, 157 pp.

    Google Scholar 

  • Eisinger, M.; Burrows, J.P. (1998). Tropospheric sulfur dioxide observed by ERS-2 GOME instrument, Geophys. Res. Lett., 25, 4177-4180.

    Google Scholar 

  • Elias, T.; Sutton, A.J.; Oppenheimer, C.; Horton, K.A.; Garbeil, H.; Tsanev, V.; McGonigle A.J.S.; and Williams-Jones, G. (2006). Comparison of COSPEC and two miniature ultraviolet spectrometer systems for SO2 measurements using scattered sunlight, Bull. Volcanol., 68, 313-322, doi: 10.1007/s00445-005-0026-5.

  • Etheridge, D.M.; Leuning, R.; De Vries, D.; Dodds, K. (2005). Atmospheric Monitoring and Verification Technologies for CO 2 Storage at Geosequestration Sites in Australia, C/1032, Report No. RPT05-0134, ii, 81pp., CO2CRC, Canberra.

    Google Scholar 

  • Francis, P.; Burton, M.R.; Oppenheimer, C. (1998). Remote measurements of volcanic gas compositions by solar occultation spectroscopy, Nature, 396, 567–570.

    Google Scholar 

  • Galle, B.; Oppenheimer, C.; Geyer, A.; McGonigle, A.J.S.; Edmonds, M.; Horrocks, L. (2002). A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: A new tool for volcano surveillance, J. Volcanol. Geothermal Res., 119, 241-254.

    Google Scholar 

  • Gerlach, T.M. (1991). Present-day CO2 emissions from volcanos, EOS, Transactions American Geophysical Union, 72(23), 249, doi: 10.1029/90EO10192.

  • Gerlach, T.M.; Delgado, H.; McGee, K.A.; Doukas, M.P.; Venegas, J.J.; Cardenas, L. (1997). Application of the LI-COR CO2 analyzer to volcanic plumes: A case study, volcán Popocatépetl, Mexico, June 7 and 10, 1995, J. Geophys. Res.,, 102(B4), 8005-8019.

    Google Scholar 

  • Gottwald, M.; Bovensmann, H.; Lichtenberg, G.; Noel, S.; von Bargen, A.; Slijkhuis, S.; Piters, A.; Hoogeveen, R.; von Savigny, C.; Buchwitz, M. et al. (2006). SCIAMACHY: Monitoring the Changing Earth’s Atmosphere, Deutsche Forschungsanstalt fur Luft und Raumfahrt, Oberpfaffenhofen, Germany.

    Google Scholar 

  • Graf, H.-F.; Feichter, J.; Langmann, B. (1997). Volcanic sulfur emissions: Estimates of source strength and its contribution to the global sulfate distribution. J. Geophys. Res., 102, 10727-10738.

    Google Scholar 

  • Gu, Y.; Rose, W.I.; Schneider, D.J.; Bluth, G.J.S.; Watson, I.M. (2005). Advantageous GOES IR results for ash mapping at high latitudes: Cleveland eruptions 2001, Geophys. Res. Lett., 32, L02305, doi: 10.1029/2004GL021651.

  • Guo, S.; Bluth, G.J.S.; Rose, W.I.; Watson, I.M.; Prata, A.J. (2004). Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors, Geochem. Geophys. Geosyst., 5(4), Q04001, doi: 10.1029/2003GC000654.

  • Halmer, M.M.; Schmincke, H.-U. (2003). The impact of moderate-scale explosive eruptions on stratospheric gas injections, Bull. Volcanol., 65, 433-440, doi: 10.1007/s00445-002-0270-x.

  • Halmer, M.M.; Schmincke, H.-U.; Graf, H.-U. (2002). The annual volcanic gas input into the atmosphere, in particular into the straosphere: A global data set for the past 100 years, J. Volcanol. Geothermal Res., 115, 511-528.

    Google Scholar 

  • Harris, A.J.L.; Ripepe, M. (2007). Synergy of multiple geophysical approaches to unravel explosive eruption conduit and source dynamics: A case study from Stromboli, Chemie der Erde, 67(1), 1-35, doi: 10.1016/j.chemer.2007.01.003.

  • Harris, D.M.; Sato, M.; Casadevall, T.J.; Rose, Jr., W.I.; Bornhorst, T.J. (1981). Emission rates of CO2 from plume measurements, in P.W. Lipman and D.R. Mullineaux (Eds.), The 1980 Eruptions of Mount St. Helens, USGS Professional Paper 1250, U.S. Geological Survey, Reston, VA, pp. 201-207.

    Google Scholar 

  • Horrocks, L.; Oppenheimer, C.; Burton, M.; Duffell, H.J. (2001). Open-path Fourier transform infrared spectroscopy of SO2: An empirical error budget analysis, with implications for volcano monitoring, J. Geophys. Res., 106(D21), 27647-27659, .

    Google Scholar 

  • Horton, K.A.; Williams-Jones, G.; Garbeil, H.; Elias, T.; Sutton, A.J.; Mouginis-Mark, P.; Porter, J.N.; Clegg, S. (2006). Real-time measurement of volcanic SO2 emissions: Validation of a new UV correlation spectrometer (FLYSPEC), Bull. Volcanol., 68, 313–322, doi: 10.1007/s00445-005-0026-5.

  • Horwell, C.J.; Baxter, P.J. (2006). The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation, Bull. Volcanol., 69, 124, doi: 10.1007/ s00445-006-0052-y.

    Google Scholar 

  • Kinoshita, K.; Kanagaki, C.; Minaka, A.; Tsuchida, S.; Matsui, T.; Tupper, A.; Yakiwara, H.; Iino, N. (2003). Ground and satellite monitoring of volcanic aerosols in visible and infrared bands, CERes Int. Symp. on Remote Sensing: Monitoring of Environmental Change in Asia, Chiba, Japan, December 16-17, 2003.

    Google Scholar 

  • Kramer, H.J. (2002). Observations of the Earth and Its Environment: Survey of Missions and Sensors (Fourth Edition), Springer-Verlag, New York, 1,510 pp.

    Google Scholar 

  • Krotkov, N.A.; Carn, S.A.; Krueger, A.J.; Bhartia, P.K.; Yang, K. (2006). Band residual difference algorithm for retrieval of SO2 from the Aura Ozone Monitoring Instrument (OMI), IEEE Trans. Geosci. Remote Sensing, 44(5), 1259-1266.

    Google Scholar 

  • Krueger, A.J. (1983). Sighting of El Chichón sulfur dioxide clouds with the Nimbus 7 Total Ozone Mapping Spectrometer, Science, 220, 1377-1379.

    Google Scholar 

  • Krueger, A.J.; Guenther, B.; Flieg, A.J.; Heath, D.F.; Hilsenrath, E.; McPeters, R.; Prabhakara, C. (1980). Satellite ozone measurements, Philosophical Trans. Royal Society London, A296, 191-293.

    Google Scholar 

  • Krueger, A.J.; Walter, L.S.; Bhartia, P.K.; Schnetzler, C.C.; Krotkov, N.A.; Sprod, I.; Bluth, G.J.S. (1995). Volcanic sulfur dioxide measurements from the total ozone mapping spectrometer instruments, J. Geophys. Res., 100(D7), 14057-14076.

    Google Scholar 

  • Krueger, A.J.; Schaefer, S.J.; Krotkov, N.; Bluth, G.; Baker, S. (2000). Ultraviolet remote sensing of volcanic emissions, in P.J. Mouginis-Marks, J.A. Crisp, and J.H. Fink (eds), Remote Sensing of Active Volcanism, AGU Monograph Series 116, American Geophysical Union, Washington, D.C., pp. 25-43.

    Google Scholar 

  • Kyle, P.R.; Sybeldon, L.M.; McIntosh, W.C.; Meeker, K.; Symonds, R. (1994). Sulfur dioxide emission rates from Mount Erebus, Antarctica, Volcanological and Environmental Studies of Mount Erebus, Antarctica, 66, 69-82.

    Google Scholar 

  • Lee, C.; Kim, Y.J.; Tanimoto, H.; Bobrowski, N.; Platt, U.; Mori, T.; Yamamoto, K.; Hong, C.S. (2005). High ClO and ozone depletion observed in the plume of Sakurajima volcano, Japan, Geophys. Res. Lett., 32, L21809, doi: 19.1029/2005GL023785.

    Google Scholar 

  • Levelt, P.F.; van den Oord, G.H.J.; Dobber, M.R.; Mälkki, A.; Visser, H.; de Vries, J.; Stammes, P.; Lundell, J.; Saari, H. (2006). The Ozone Monitoring Instrument, IEEE Trans. Geosci. Remote Sensing, 44(5), 1093-1101, doi: 10.1109/TGRS.2006.872333.

  • Love, S.P.; Goff, F.; Counce, D.; Siebe, C.; Delgado, H. (1998). Passive infrared spectroscopy of the eruption plume at Popocatepétl volcano, Mexico, Nature, 396, 563-566.

    Google Scholar 

  • Malinconico, L.L. (1979). Fluctuations in SO2 emission during recent eruptions of Etna, Nature, 278, 43-45.

    Google Scholar 

  • Mankin, W.G.; Coffey, M.T.; Goldman, A. (1992). Airborne observations of SO2, HCl, and O3 in the stratospheric plume of the Pinatubo volcano in July 1991, Geophys. Res. Lett., 19(2), 179-182.

    Google Scholar 

  • Marty, B.; Giggenbach, W.F. (1990). Major and rare gases at White Island volcano, New Zealand: Origin and flux of volatiles, Geophys. Res. Lett., 17(3), 247–250.

    Google Scholar 

  • McGee, K.A.; Gerlach, T.M. (1998). Airborne volcanic plume measurements using a FT-IR spectrometer, Kīlauea volcano, Hawaii, Geophys. Res. Lett., 25(5), 615-618.

    Google Scholar 

  • McGee, K.A.; Doukas, M.P.; Gerlach, T.M. (2001). Quiescent hydrogen sulfide and carbon dioxide degassing from Mount Baker, Washington, Geophys. Res. Lett., 28(23), 4479-4482.

    Google Scholar 

  • McGonigle, A.J.S. (2005). Volcano remote sensing with ground-based spectroscopy, Philosophical Trans. Royal Society London, A363, 2915-2929.

    Google Scholar 

  • McGonigle, A.J.S.; Oppenheimer, C.; Galle, B.; Mather, T.A.; Pyle, D.M. (2002). Walking traverse and scanning DOAS measurements of volcanic gas emission rates. Geophys. Res. Lett., 29, 1985-1989, doi: 10.1029/2002GL015827.

  • McGonigle, A.J.S.; Oppenheimer, C.; Galle, B.; Edmonds, M.; Caltabiano, T.; Salerno, G.; Burton, M.; Mather, T.A. (2003). Volcanic sulphur dioxide flux measurements at Etna, Vulcano and Stromboli obtained using an automated scanning static ultraviolet spectrometer, J. Geophys. Res., 108, 2455, doi: 10.1029/2002JB002261.

  • McGonigle, A.J.S.; Oppenheimer, C.; Tsanev, V.I. (2004). Sulphur dioxide fluxes from Papua New Guinea’s volcanoes, Geophys. Res. Lett., 31, L08606, doi: 10.1029/2004GL019568.

  • McGonigle, A.J.S.; Inguaggiato, S.; Aiuppa, A.; Hayes, A.R.; Oppenheimer, C. (2005). Accurate measurement of volcanic SO2 flux: Determination of plume transport speed and integrated SO2 concentration with a single device, Geochem. Geophys. Geosyst., 6, Q02003.

    Google Scholar 

  • McKeen, S.A.; Liu, S.C.; Kiang, C.S. (1984). On the chemistry of stratospheric SO2 from volcanic eruptions, J. Geophys. Res., 89(D3), 4873-4881.

    Google Scholar 

  • Miller, C.A.; Werner, C.A.; Herd, R.; Edmonds, M. (2006). A remotely operated, automatic scanning DOAS system at White Island, New Zealand, EOS, Trans. Am. Geophys. Union, 87(52), Fall Meeting Suppl., Abstract V53A-1722.

    Google Scholar 

  • Moffat, A.J.; Millan, M.M. (1971). The application of optical correlation techniques to the remote sensing of SO2 plumes using skylight, Atmos. Environ., 5, 677-690.

    Google Scholar 

  • Mori, T.; Burton, M. (2006). The SO2 camera: A simple, fast and cheap method for ground-based imaging of SO2 in volcanic plumes, Geophys. Res. Lett., 33, L24804, doi: 10.1029/2006GL027916.

  • Notsu, K.; Mori, T.; Igarashi, G.; Tohjima, Y.; Wakita, H. (2003). Infrared spectral radiometer: A new tool for remote measurement of SO2 of volcanic gas, Geochem. J, 27, 361-366.

    Google Scholar 

  • NRC (2005). Earth Science and Applications from Space: Urgent Needs and Opportunities to Serve the Nation, National Academies Press, Washington, D.C., 456 pp. [National Research Council].

    Google Scholar 

  • O’Dwyer, M.; McGonigle, A.J.S.; Padgett, M.J.; Oppenheimer, C.; Inguaggiato, S. (2003). Real time measurements of volcanic H2S/SO2 ratios by UV spectroscopy, Geophys. Res. Lett., 30, 1652-1655, doi: 10.1029/2003GL017246.

  • Oman, L.; Robock, A.; Stenchikov, G. (2005). Climatic response to high-latitude volcanic eruptions, J. Geophys. Res., 110, D13103, doi: 1029/2004JD 005487.

    Google Scholar 

  • Oppenheimer, C.; Francis, P.; Burton, M.; Maciejewski, A.; Boardman L. (1998a). Remote measurement of volcanic gases by Fourier transform infrared spectroscopy, Applied Physics, B67, 505-515.

    Google Scholar 

  • Oppenheimer, C.; Francis, P.; Stix, J. (1998b). Depletion rates of sulfur dioxide in tropospheric volcanic plumes, Geophys. Res. Lett., 25(14), 2671-2674.

    Google Scholar 

  • Oppenheimer, C.; Edmonds, M.; Francis, P.; Burton, M.R. (2002). Variation in HCl/SO2 gas ratios observed by Fourier transform spectroscopy at Soufrière Hills volcano, Montserrat, in T.H Druitt and P. Kokelaar (Eds.), The Eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999, Memorandum 21, Geological Society, London, pp. 621–639.

    Google Scholar 

  • Pitari, G.; Mancini, E.; Rizi, V.; Shindell, D.T. (2002). Impact of future climate and emission changes on stratospheric aerosols and ozone, J. Atmos. Sci., 59, 414-440.

    Google Scholar 

  • Platt, U. (1994). Differential optical absorption spectroscopy (DOAS), Chem. Anal. Series, 127, 27-83.

    Google Scholar 

  • Porter, J.N.; Horton, K.A.; Mouginis-Mark, P.J.; Lienert, B.; Sharma, S.K.; Lau, E. (2002). Sun photometer and lidar measurements of the plume from the Hawaii Kilauea volcano Pu’u O’o vent: Aerosol and SO2 lifetime, Geophys. Res. Lett., 29(16), doi: 10.1029/2002GL014744.

  • Power, J.A.; Nye, C.J.; Coombs, M.L.; Wessels, R.L.; Cervelli, P.F.; Dehn, J.; Wallace, K.L.; Freymueller, J.T.; Doukas, M.P. (2006). The reawakening of Alaska’s Augustine Volcano, EOS, Transactions American Geophysical Union, 87(37), 373-377.

    Google Scholar 

  • Prata, A.J.; Bernardo, C. (2007). Retrieval of volcanic ash particle size, mass and optical depth from a ground-based thermal infrared camera, J. Volcanol. Geotherm. Res., 186(1/2), 91-107, doi: 10.1016/ j.volgeores.2009.02.07.

    Google Scholar 

  • Prata, A.J.; Kerkmann, J. (2007). Simultaneous retrieval of volcanic ash and SO2 using MSG-SEVIRI measurements, Geophys. Res. Lett., 34, L05813, doi: 10.1029/2006GL028691.

  • Prata, A.J.; Barton, I.J.; Kingwell, J. (1993). Aircraft hazard from volcanoes, Nature, 366, 199.

    Google Scholar 

  • Prata, A.J.; Rose, W.I.; Self, S.; O’Brien, D.M. (2003). Global, long-term sulphur dioxide measurements from TOVS data: A new tool for studying explosive volcanism and climate, in A. Robock and C. Oppen-heimer (Eds.), Volcanism and the Earth’s Atmosphere, Geophysical Monograph 139, American Geophysical Union, Washington, D.C., pp. 75-92.

    Google Scholar 

  • Prata, A.J.; Schreiner, A.; Schmit, A.; Ellrod, G. (2004). First measurements of volcanic sulphur dioxide from the GOES sounder: Implications for improved aviation safety, Proc. Int. Conf. on Volcanic Ash and Aviation Safety, Alexandria, VA, June 21-24, 2004.

    Google Scholar 

  • Prata, A.J.; Carn, S.A.; Stohl, A.; Kerkmann, J. (2007). Long range transport and fate of a stratospheric volcanic cloud from Soufrière Hills volcano, Montserrat, Atmos. Chem. Phys., 7, 5093-5103.

    Google Scholar 

  • Pugnaghi, S.; Teggi, S.; Corradini, S.; Buongiorno, M.F.; Merucci, L.; Bogliolo, M.P. (2002). Estimation of SO2 abundance in the eruption plume of Mt Etna using two MIVIS thermal infrared channels: A case study from the Sicily-1997 campaign, Bull. Volcanol., 64, 328-337, doi: 10.1007/s00445-002-0211-8.

  • Pyle, D.M.; Beattie, P.D.; Bluth, G.J.S. (1996). Sulphur emissions to the stratosphere from explosive volcanic eruptions, Bull. Volcanol., 57, 663-671.

    Google Scholar 

  • Read, W.G.; Froidevaux, L.; Waters, J.W. (1993). Microwave limb sounder measurement of stratospheric SO2 from the Mt. Pinatubo volcano, Geophys. Res. Lett, 20(12), 1299-1302.

    Google Scholar 

  • Realmuto, V.J. (1995). Volcanic SO 2 : High and Moderate Spatial Resolution, EOS IDS Volcanology Team Data Product Document #3289, v3.0, Jet Propulsion Laboratory, Pasadena, CA, 16 pp.

    Google Scholar 

  • Realmuto, V.J. (2000). The potential use of earth observing system data to monitor the passive emission of sulfur dioxide from volcanoes, in P. Mouginis-Marks, J. Crisp, and J. Fink (Eds.), Remote Sensing of Active Volcanism, AGU Monograph 116, American Geophysical Union, Washington, D.C., pp.101-115

    Google Scholar 

  • Realmuto V.J.; Abrams M.J.; Buongiorno, M.F.; Pieri, D.C. (1994). The use of multispectral thermal infrared image data to estimate the sulfur-dioxide flux from volcanoes: A case-study from Mount Etna, Sicily, July 29, 1986, J. Geophys. Res.—Solid Earth, 99(B1), 481-488.

    Google Scholar 

  • Realmuto, V.J.; Sutton, A.J.; Elias, T. (1997). Multispectral thermal infrared mapping of sulfur dioxide plumes: A case study from the East Rift Zone of Kllauea, Hawaii, J. Geophys. Res., 102, 15057–15072.

    Google Scholar 

  • Richter, A.; Burrows, J.P.; Nuss, H.; Granier, C.; Niemeier, U. (2005). Increase in tropospheric nitrogen dioxide over China observed from space, Nature, 437, 129-132, doi: 10.1038/nature04092.

  • Ripepe, M.; Delle Donne, D.; Lacanna, G., Marchetti, E.; Ulivieri, G. (2009). The onset of the 2007 Strom-boli effusive eruption recorded by an integrated geophysical network, J. Volcanol. Geotherm. Res., 182(3/4), 131-136, doi: 10.1016/j.jvolgeores.2009. 02.011.

  • Robock, A. (2000). Volcanic eruptions and climate, Rev. of Geophys., 38(2), 191-219.

    Google Scholar 

  • Rose, W.I.; Heiken, G.; Wohletz, K.; Eppler, D.; Barr, S.; Miller, T.; Chuan, R.L.; Symonds, R.B. (1988). Direct rate measurements of eruption plumes at Augustine volcano: A problem of scaling and uncontrolled variables, J. Geophys. Res., 93(B5), 4485–4499.

    Google Scholar 

  • Rose, W.I.; Gu, Y.; Watson, I.M.; Yu, T.; Bluth, G.J.S.; Prata, A.J.; Krueger, A.J.; Krotkov, N.; Carn, S.; Fromm, M.D. et al. (2003). The February-March 2000 Eruption of Hekla, Iceland from a Satellite Perspective, in A. Robock and C. Oppenheimer (Eds.), Volcanism and the Earth’s Atmosphere, AGU Monograph 139, American Geophysical Union, Washington, D.C., pp. 107-130.

    Google Scholar 

  • Rose, W.I.; Millard, G.A.; Mather, T.A.; Hunton, D.E.; Anderson, B.; Oppenheimer, C.; Thornton, B.F.; Gerlach, T.M.; Viggiano, A.A.; Kondo, Y. et al. (2006). Atmospheric chemistry of a 33-34 hour old volcanic cloud from Hekla Volcano (Iceland): Insights from direct sampling and the application of chemical box modeling, J. Geophys. Res., 111, D20206, doi: 10.1029/2005JD006872.

  • Schmit, T.; Gunshor, M.M.; Menzel, P.W.; Gurka, J.J.; Li, J.; Backmeier, A.S. (2006). Introducing the next-generation advanced baseline imager on GOES-R, Bull. Amer. Meteorol. Society, 86(8), 1079-1096, doi: 10.1175/BAMS-86-8-1079.

  • Schneider, D.J.; Rose, W.I.; Kelly, L. (1995). Tracking of 1992 eruption clouds from Crater Peak vent on Mount Spurr Volcano, Alaska, in T.E.C. Keith (Ed.), The 1992 Eruptions of Crater Peak Vent, Mt. Spurr Volcano, Alaska (USGS Bulletin 2139), U.S. Geological Survey, Reston, VA, 220 pp.

    Google Scholar 

  • Seinfeld, J.H.; Pandis, S.N. (1998). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley & Sons, New York, 1,326 pp..

    Google Scholar 

  • Simkin, T.; Siebert, L. (1994). Volcanoes of the World (Second Edition), Geoscience Press, Tucson, AZ, 349 pp.

    Google Scholar 

  • Stix, J.; Gaonac’h, H. (2000). Gas, plume, and thermal monitoring, in H. Sigurdsson, B.F. Houghton, S.R. McNutt, H. Rymer, and J. Stix (Eds.), Encyclopedia of Volcanoes, Academic Press, San Diego, CA, pp. 1141-1163.

    Google Scholar 

  • Stoiber, R.E. (1995). Volcanic gases from subaerial volcanoes on Earth, Global Earth Physics: A Handbook of Physical Constants, AGU Reference Shelf 1, American Geophysical Union, Washington, D.C., pp. 308-319.

    Google Scholar 

  • Stoiber, R.E.; Jepsen, A. (1973). Sulfur dioxide contributions to the atmosphere by volcanoes, Science, 182, 577-578.

    Google Scholar 

  • Stoiber, R.E.; Malinconico, Jr., L.L.; Williams, S.N. (1983). Use of the Correlation Spectrometer at volcanoes, in H. Tazieff and J.-C. Sabroux (Eds.), Forecasting Volcanic Events, Elsevier, Amsterdam, pp. 425-444.

    Google Scholar 

  • Stoiber, R.E.; Williams, S.N.; Huebert, B.J. (1986). Sulfur and halogen gases at Masaya Caldera Complex, Nicaragua: Total flux and variations with time. J. Geophys. Res., 91, 12215-12231.

    Google Scholar 

  • Stoiber, R.E.; Williams, S.N.; Huebert, B. (1987). Annual contribution of sulfur dioxide to the atmosphere by volcanoes, J. Volcanol. Geothermal Res., 33, 1-8.

    Google Scholar 

  • Symonds, R.; Rose, W.I.; Reed, M. (1988). Contributions of Cl and F bearing gases to the atmosphere, Nature, 344, 415-418.

    Google Scholar 

  • Textor, C.; Graf, H.-F.; Herzog, M.; Oberhuber, J.M. (2003) Injection of gases into the stratosphere by explosive volcanic eruptions, J. Geophys. Res., 108(D19), D4606, doi: 10.1029/2002JD002987.

  • Textor, C.; Graf, H.-F.; Timmrick, C.; Robock, A. (2004) Emissions from volcanoes, in C. Granier, P. Artaxo, and C.E. Reeves (Eds.), Emissions of Atmospheric Trace Compounds, Kluwer Academic, Dordrecht, The Netherlands, pp. 269-303.

    Google Scholar 

  • Thomas, H.E.; Prata, A.J. (2011). Sulphur dioxide as a volcanic ash proxy during the April-May 2010 eruption of Eyjafjallajökull Volcano, Iceland, Atmos. Chem. Phys. Discuss., 11, 7757-7780, doi: 10.5194/ acpd-11-7757-2011.

    Google Scholar 

  • Thordarson, H.; Self, S. (2003). Atmospheric and environmental effects of the 1783-1784 Laki eruption: A review and reassessment, J. Geophys. Res., 108(D1), 4011, doi: 10.1029/2001JD002042.

  • Urai, M.; Pieri, D. (2011). ASTER applications in volcanology, in B. Ramachandran, C.O. Justice, and M.J. Abrams (Eds.), Land Remote Sensing and Global Environmental Change, Springer, New York, pp. 245272.

    Google Scholar 

  • Waters, J.W. et al. (2006). The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura Satellite, IEEE Trans. Geosci. Remote Sensing, 44(5), 1075-1091.

    Google Scholar 

  • Watson, I.M.; Oppenheimer, C. (2000). Particle size distribution of Mount Etna’s aerosol plume constrained by sun photometry, J. Geophys. Res., 105(D8), 9823–9829.

    Google Scholar 

  • Watson, I.M.; Oppenheimer, C.; Voight, B.; Francis, P.W.; Clarke, A.; Stix, J.; Miller, A.; Pyle, D.M.;

    Google Scholar 

  • Burton, M.R.; Young, S.R.; Norton, G.; Loughlin, S.; Darroux B.; MVO Staff (2000). The relationship between degassing and ground deformation at Soufrière Hills Volcano, Montserrat, J. Volcanol. Geothermal Res., 98(1-4), 117-126.

    Google Scholar 

  • Watson, I.M.; Realmuto, V.J.; Rose, W.I.; Prata, A.J.; Bluth, G.J.S.; Gu, Y.; Bader, C.E.; Yu, T. (2004). Thermal infrared remote sensing of volcanic emissions using the moderate resolution imaging spectro-radiometer, J. Volcanol. Geothermal Res., 135, 7589.

    Google Scholar 

  • Weibring, P.; Edner, H.; Svanberg, S.; Cecchi, G.; Pantani, L.; Ferrara, R.; Caltabiano, T. (1998). Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC), Appl. Phys., B67, 419-426.

    Google Scholar 

  • Werner, C.; Brantley, S. (2003). CO2 emissions from the Yellowstone volcanic system, Geochem. Geophys. Geosyst., 4(7), 1061, doi: 10.1029/2002GC000473.

  • Werner, C.; Miller, C.A.; Edmonds, M.; Herd, R. (2006a). Short-term temporal variability of SO2 emissions at White Island, New Zealand, EOS, Trans. Am. Geophys. Union, 87(52), Fall Meeting Suppl., Abstract V43E-02.

    Google Scholar 

  • Werner, C.; Christenson, B.W.; Hagerty, M. Britten K. (2006b). Variability of volcanic emissions during a crater lake heating cycle at Ruapehu Volcano, New Zealand, J. Volcanol. Geothermal Res., 106, 291-302.

    Google Scholar 

  • Werner, C.; Hurst, A.W.; Scott, B.; Sherburn, S.; Christenson, B.W.; Britten, K.; Cole-Baker, J.; Mullan, B. (2008). Variability of passive gas emissions and seismicity during crater lake growth at White Island Volcano, New Zealand, 2002-2006, J. Geophys. Res., 113, B01204, doi: 10.1029/ 2007JB005094.

    Google Scholar 

  • Westrich, H.R.; Gerlach, T.M. (1992). Magmatic gas source for the stratospheric SO2 cloud from the June 15, 1991 eruption of Mount Pinatubo, Geology, 20(10), doi: 10.1130/0091-7613.

  • Williams, S.N.; Schaefer, S.J.; Calvache, V.; Lopez, D. (1992). Global carbon dioxide emission to the atmosphere by volcanoes, Geochim. Cosmochim. Acta, 36, 1765-1770.

    Google Scholar 

  • Yang, K.; Krotkov, N.A.; Krueger, A.J.; Carn, S.A.; Bhartia, P.K.; Levelt, P.F. (2007). Retrieval of large volcanic SO2 columns from the Aura Ozone Monitoring Instrument: Comparison and limitations, J. Geophys. Res., 112, D24S43, doi: 10.1029/ 2007 JD008825.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Prata .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prata, F., Bluth, G., Werner, C., Realmuto, V., Carn, S., Watson, M. (2015). Remote sensing of gas emissions from volcanoes. In: Monitoring Volcanoes in the North Pacific. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68750-4_6

Download citation

Publish with us

Policies and ethics