Nothing Special   »   [go: up one dir, main page]

Skip to main content

An HMM Based System for Acoustic Event Detection

  • Conference paper
Multimodal Technologies for Perception of Humans (RT 2007, CLEAR 2007)

Abstract

This paper deals with the CLEAR 2007 evaluation on the detection of acoustic events which happen during seminars. The proposed system first converts an audio sequence in a stream of MFCC features, then a detecting/classifying block identifies an acoustic event with time stamps and assign to it a label among all possible event labels. Identification and classification are based on Hidden Markov Models (HMM). The results, measured in terms of two metrics (accuracy and error rate) are obtained applying the implemented system on the interactive seminars collected under the CHIL project. Final not very good results highlight the task complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wang, D., Brown, G.: Computational Auditory Scene Analysis: Principles, Algorithms and Applications. Wiley-IEEE Press (2006)

    Google Scholar 

  2. Kennedy, L., Ellis, D.: Laughter detection in meetings. In: NIST ICASSP Meeting Recognition Workshop, Montreal, Canada, pp. 118–121 (2004)

    Google Scholar 

  3. Lu, L., Hong-Jiang, Z.J.H.: Content analysis for audio classification and segmentation. IEEE Transaction on Speech and Audio processing 10(7), 504–516 (2002)

    Article  Google Scholar 

  4. Pinquier, J., Rouas, J.L., Andrè-Obrecht, R.: Robust speech / music classification in audio documents. In: Proc. ICSLP, Denver, USA, vol. 3 (2002) 2005–2008

    Google Scholar 

  5. Vacher, M., Istrate, D., Serigna, J.F.: Sound detection and classification trough transient models using wavelet coefficient trees. In: EUSIPCO, Vienna, Austria, pp. 1171–1174 (2004)

    Google Scholar 

  6. Xiong, Z., Radhakrishnan, R., Divakaran, A., Huang, T.: Audio events detection based highlights extraction from baseball, golf and soccer games in a unified framework. In: ICME 2003, Baltimora, USA, vol. 3, pp. 401–404 (2003)

    Google Scholar 

  7. Slaney, M.: Mixtures of probability experts for audio retrieval and indexing. In: ICME 2002, Ischia, Italy, vol. 1, pp. 345–348 (2002)

    Google Scholar 

  8. Rabiner, L.R., Juang, B.H.: Fundamentals of Speech Recognition. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  9. Rabiner, R.L.: A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  10. Temko, A., Malkin, R., Zieger, C., Macho, D., Nadeu, C., Omologo, M.: Clear evaluation of acoustic event detection and classification systems. In: Stiefelhagen, R., Garofolo, J.S. (eds.) CLEAR 2006. LNCS, vol. 4122, Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rainer Stiefelhagen Rachel Bowers Jonathan Fiscus

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zieger, C. (2008). An HMM Based System for Acoustic Event Detection. In: Stiefelhagen, R., Bowers, R., Fiscus, J. (eds) Multimodal Technologies for Perception of Humans. RT CLEAR 2007 2007. Lecture Notes in Computer Science, vol 4625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68585-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68585-2_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68584-5

  • Online ISBN: 978-3-540-68585-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics