Abstract
We integrate human detection and regional affine invariant feature tracking into a robust human tracking system. First, foreground blobs are detected using background subtraction. The background model is built with a local predictive model to cope with large illumination changes. Detected foreground blobs are then used by a box tracker to establish stable tracks of moving objects. Human detection hypotheses are detected using a combination of both shape and region information through a hierarchical part-template matching method. Human detection results are then used to refine tracks for moving people. Track refinement, extension and merging are carried out with a robust tracker that is based on regional affine invariant features. We show experimental results for the separate components as well as the entire system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking, pp. 245–252. IEEE Computer Society, Washington, DC, USA (1999)
Kilger, M.: A shadow handler in a video-based real-time traffic monitoring system. In: Proc. IEEE Workshop Applications of Computer Vision, pp. 11–18. IEEE Computer Society, Los Alamitos (1992)
Kim, K., Chalidabhongse, T., Harwood, D., Davis, L.S.: Background modeling and subtraction by codebook construction, pp. 3061–3064. IEEE Computer Society, Washington (2004)
Koller, D., Weber, J., Malik, J.: Robust multiple car tracking with occlusion reasoning, pp. 189–196. Springer, London (1994)
Wu, B., Nevatia, R.: Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors. In: ICCV (2005)
Mikolajczyk, K., Schmid, C., Zisserman, A.: Human detection based on a probabilistic assembly of robust part detector. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 69–82. Springer, Heidelberg (2004)
Gavrila, D.M., Philomin, V.: Real-time object detection for smart vehicles. In: ICCV (1999)
Zhao, T., Nevatia, R.: Mcmc-based approach for human segmentation. In: CVPR (2004)
Smith, K., Perez, D.G., Odobez, J.M.: Using particles to track varying numbers of interacting people. In: CVPR (2005)
Wang, H., Suter, D., Schindler, K.: Effective appearance model and similarity measure for particle filtering and visual tracking. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 606–618. Springer, Heidelberg (2006)
Han, B., Davis, L.: On-line density-based appearance modeling for object tracking. In: Proc. IEEE ICCV 2005, pp. 1492–1499. IEEE Computer Society, Los Alamitos (2005)
Jepson, A., Fleet, D., El-Maraghi, T.: Robust online appearance models for visual tracking. IEEE Trans. PAMI 25(10) (2003)
Matas, J., Chum, O., Martin, U., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proc. BMVC 2002 London, pp. 384–393 (2002)
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. Int’l J. Computer Vision 65(1-2), 43–72 (2005)
Collins, R., Liu, Y., Leordeanu, M.: On-line selection of discriminative tracking features. IEEE Trans. PAMI 27(10), 1631–1643 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tran, S., Lin, Z., Harwood, D., Davis, L. (2008). UMD_VDT, an Integration of Detection and Tracking Methods for Multiple Human Tracking. In: Stiefelhagen, R., Bowers, R., Fiscus, J. (eds) Multimodal Technologies for Perception of Humans. RT CLEAR 2007 2007. Lecture Notes in Computer Science, vol 4625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68585-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-68585-2_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68584-5
Online ISBN: 978-3-540-68585-2
eBook Packages: Computer ScienceComputer Science (R0)