Abstract
Advanced digital image segmentation framework implemented by using service oriented architecture is presented. The intelligence is not incorporated just in a segmentation method, which is controlled by 11 parameters, but mostly in a routine for easier parameters’ values determination. Three different approaches are implemented: 1) manual parameter value selection, 2) interactive step-by-step parameter value selection based on visual image content, and 3) fast and intelligent parameter value determination based on machine learning. Intelligence of second and third approach is introduced by end-users in the repeated interaction with our prototype in attempts to correctly segment out the structures from image. Fast and intelligent parameter determination predicts a new set of parameters’ values for current image being processed based on knowledge models constructed from previous successful (positive samples) and unsuccessful (negative samples) parameter selections. Such approach pointed out to be very efficient and fast, especially if we have many positive and negative samples in the learning set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Forsyth, D.A., Ponce, J.: Computer vision, a modern approach. Prentice-Hall, Englewood Cliffs (2003)
Granier, P., Potočnik, B.: Interactive parameter determination for grey-level images segmentation method. In: Proceedings of the 13th Elect. and Comp. Conf., vol. B, pp. 175–178 (2004)
Lenič, M., Potočnik, B., Zazula, D.: Prototype of inteligent web service for digital images segmentation, http://www.cs.feri.uni-mb.si/podrocje.aspx?id=30
Long, F., Zhang, H., Feng, D.D.: Fundamentals of content-based image retrieval. In: Feng, D., Siu, W.C., Zhang, H.J. (eds.) Multimedia information retrieval and management-Technological fundamentals and applications. Springer, Berlin (2005)
Potočnik, B., Zazula, D.: Automated analysis of a sequence of ovarian ultrasound images, Part I: Segmentation of single 2D images. Image vision and computing 20(3), 217–225 (2002)
Potočnik, B., Zazula, D.: Automated analysis of a sequence of ovarian ultrasound images, Part II: Prediction-based object recognition from a sequence of images. Image vision and computing 20(3), 227–235 (2002)
Potočnik, B., Lenič, M., Zazula, D.: Inteligentna spletna storitev za segmentiranje digitalnih slik (Intelligent web service for digital images segmentation). In: Proceedings of the 14th Elect. and Comp. Conf., vol. A, pp. 193–196 (2005)
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recepies in C, The art of scientific computing. Cambridge University Press, Cambridge (1992)
Saykol, E., Güdükbay, U., Ulusoy, Ö.: A histogram-based approach for object-based query-by-shape-and-color in image and video databases. Image and vision computing 23, 1170–1180 (2005)
Sonka, M., Hlavac, V., Boyle, R.: Image processing, analysis and machine vision. Chapman and Hall, Boca Raton (1994)
Witten, H.I., Frank, E.: Data Mining: Practical machine learning tools with Java implementations. Morgan Kaufmann, San Francisco (2005)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Potočnik, B., Lenič, M. (2008). Fast and Intelligent Determination of Image Segmentation Method Parameters. In: Tsihrintzis, G.A., Virvou, M., Howlett, R.J., Jain, L.C. (eds) New Directions in Intelligent Interactive Multimedia. Studies in Computational Intelligence, vol 142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68127-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-68127-4_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68126-7
Online ISBN: 978-3-540-68127-4
eBook Packages: EngineeringEngineering (R0)