Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fast and Intelligent Determination of Image Segmentation Method Parameters

  • Chapter
New Directions in Intelligent Interactive Multimedia

Part of the book series: Studies in Computational Intelligence ((SCI,volume 142))

Abstract

Advanced digital image segmentation framework implemented by using service oriented architecture is presented. The intelligence is not incorporated just in a segmentation method, which is controlled by 11 parameters, but mostly in a routine for easier parameters’ values determination. Three different approaches are implemented: 1) manual parameter value selection, 2) interactive step-by-step parameter value selection based on visual image content, and 3) fast and intelligent parameter value determination based on machine learning. Intelligence of second and third approach is introduced by end-users in the repeated interaction with our prototype in attempts to correctly segment out the structures from image. Fast and intelligent parameter determination predicts a new set of parameters’ values for current image being processed based on knowledge models constructed from previous successful (positive samples) and unsuccessful (negative samples) parameter selections. Such approach pointed out to be very efficient and fast, especially if we have many positive and negative samples in the learning set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Forsyth, D.A., Ponce, J.: Computer vision, a modern approach. Prentice-Hall, Englewood Cliffs (2003)

    Google Scholar 

  2. Granier, P., Potočnik, B.: Interactive parameter determination for grey-level images segmentation method. In: Proceedings of the 13th Elect. and Comp. Conf., vol. B, pp. 175–178 (2004)

    Google Scholar 

  3. Lenič, M., Potočnik, B., Zazula, D.: Prototype of inteligent web service for digital images segmentation, http://www.cs.feri.uni-mb.si/podrocje.aspx?id=30

  4. Long, F., Zhang, H., Feng, D.D.: Fundamentals of content-based image retrieval. In: Feng, D., Siu, W.C., Zhang, H.J. (eds.) Multimedia information retrieval and management-Technological fundamentals and applications. Springer, Berlin (2005)

    Google Scholar 

  5. Potočnik, B., Zazula, D.: Automated analysis of a sequence of ovarian ultrasound images, Part I: Segmentation of single 2D images. Image vision and computing 20(3), 217–225 (2002)

    Article  Google Scholar 

  6. Potočnik, B., Zazula, D.: Automated analysis of a sequence of ovarian ultrasound images, Part II: Prediction-based object recognition from a sequence of images. Image vision and computing 20(3), 227–235 (2002)

    Article  Google Scholar 

  7. Potočnik, B., Lenič, M., Zazula, D.: Inteligentna spletna storitev za segmentiranje digitalnih slik (Intelligent web service for digital images segmentation). In: Proceedings of the 14th Elect. and Comp. Conf., vol. A, pp. 193–196 (2005)

    Google Scholar 

  8. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recepies in C, The art of scientific computing. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  9. Saykol, E., Güdükbay, U., Ulusoy, Ö.: A histogram-based approach for object-based query-by-shape-and-color in image and video databases. Image and vision computing 23, 1170–1180 (2005)

    Article  Google Scholar 

  10. Sonka, M., Hlavac, V., Boyle, R.: Image processing, analysis and machine vision. Chapman and Hall, Boca Raton (1994)

    Google Scholar 

  11. Witten, H.I., Frank, E.: Data Mining: Practical machine learning tools with Java implementations. Morgan Kaufmann, San Francisco (2005)

    Google Scholar 

  12. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

George A. Tsihrintzis Maria Virvou Robert J. Howlett Lakhmi C. Jain

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Potočnik, B., Lenič, M. (2008). Fast and Intelligent Determination of Image Segmentation Method Parameters. In: Tsihrintzis, G.A., Virvou, M., Howlett, R.J., Jain, L.C. (eds) New Directions in Intelligent Interactive Multimedia. Studies in Computational Intelligence, vol 142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68127-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68127-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68126-7

  • Online ISBN: 978-3-540-68127-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics