Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1530))

  • 362 Accesses

Abstract

The Mean-Value Calculus, MVC, of Zhou and Li [19] is extended with the least and the greatest fixed point operators. The resulting logic is called μMVC. Timed behaviours with naturally recursive structure can be elegantly specified in this logic. Some examples of such usage are given. The expressive power of the logic is also studied. It is shown that the propositional fragment of the logic, even with discrete time, is powerful enough to encode the computations of nondeterministic turing machines. Hence, the satisfiability of propositional μMVC over both dense and discrete times is undecidedable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Henzinger, T.A.: A Really Temporal Logic. Jour. ACM 41(1) (1994)

    Google Scholar 

  2. Banieqbal, B., Barringer, H.: Temporal Logic with Fixed Points. In: Banieqbal, B., Pnueli, A., Barringer, H. (eds.) Temporal Logic in Specification. LNCS, vol. 398. Springer, Heidelberg (1989)

    Google Scholar 

  3. Emerson, E.: Real-time and the Mu Calculus. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600. Springer, Heidelberg (1992)

    Google Scholar 

  4. Emerson, E., Clarke, E.: Characterising Correctness Properties of Parallel Programs using Fixed-points. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85. Springer, Heidelberg (1980)

    Google Scholar 

  5. Hansen, M.R., Pandya, P.K.: Zhou Chaochen. Finite Divergence. Theoretical Computer Science 138, 113–139 (1994)

    Article  MathSciNet  Google Scholar 

  6. Hansen, M.R., Zhou, C.: Chaochen Zhou. Duration calculus: Logical foundations. Formal Aspects of Computing 9(3), 283–330 (1997)

    Article  MATH  Google Scholar 

  7. Kozen, D.: Results on Propositional Mu-calculus. Thoeretical Computer Science 27, 333–354 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  8. Li, X.: A Mean Value Calculus. Ph.D. Thesis, Software Institute, Academia Sinica (1994)

    Google Scholar 

  9. Moszkowski, B.: A Temporal Logic for Multi-level Reasoning about Hardware. IEEE Computer 18(2), 10–19 (1985)

    Google Scholar 

  10. Pandya, P.K.: Some Extensions to Mean-Value Calculus: Expressiveness and Decidability. In: Kleine Büning, H. (ed.) CSL 1995. LNCS, vol. 1092. Springer, Heidelberg (1996)

    Google Scholar 

  11. Pandya, P.K., Hung, D.V.: Duration Calculus of Weakly Monotonic Time. In: Ravn, A.P., Rischel, H. (eds.) FTRTFT 1998. LNCS, vol. 1486, p. 55. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Pandya, P.K., Ramakrishna, Y.S.: A Recursive Mean Value Calculus. Technical Report TCS-95/3, Computer Science Group, TIFR, Bombay (1995)

    Google Scholar 

  13. Pandya, P.K., Ramakrishna, Y.S., Shyamasundar, R.K.: A Compositional Semantics of Esterel in Duration Calculus. In: Proc. Second AMAST workshop on Real-time Systems: Models and Proofs, Bordeux (June 1995)

    Google Scholar 

  14. Pandya, P.K., Wang, H., Xu, Q.: Towards a Theory of Sequential Hybrid Programs. In: de Roever, W.P., Gries, D. (eds.) Proc. PROCOMET 1998, Shelter Island, New York. Chapman & Hall, Boca Raton (1998)

    Google Scholar 

  15. Skakkebaek, J.U., Shankar, N.: Towards a Duration Calculus Proof Assistant in PVS. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863. Springer, Heidelberg (1994)

    Google Scholar 

  16. Stirling, C.: Modal and Temporal logics. In: Handbook of Logic in Computer Science, vol. 2, pp. 476–563. Clarendon Press, Oxford (1995)

    Google Scholar 

  17. Schneider, G., Xu, Q.: Towards Formal Semantics of Verilog using Duration Calculus. In: Ravn, A.P., Rischel, H. (eds.) FTRTFT 1998. LNCS, vol. 1486, p. 282. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  18. Zhou, C., Hoare, C.A.R., Ravn, A.P.: A Calculus of Durations. Information Processing Letters 40(5), 269–276 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zhou, C., Li, X.: A Mean Value Calculus of Durations. In: Roscoe, A.W. (ed.) A Classical Mind: Essays in Honour of C.A.R. Hoare, pp. 431–451. Prentice Hall International, Englewood Cliffs (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pandya, P.K., Ramakrishna, Y.S. (1998). Recursive Mean-Value Calculus. In: Arvind, V., Ramanujam, S. (eds) Foundations of Software Technology and Theoretical Computer Science. FSTTCS 1998. Lecture Notes in Computer Science, vol 1530. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49382-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49382-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65384-4

  • Online ISBN: 978-3-540-49382-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics