Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 905))

Abstract

Intensity-based classification of MR images has proven problematic, even when advanced techniques are used. Intra-scan and inter-scan intensity inhomogeneities are a common source of difficulty. While reported methods have had some success in correcting intra-scan inhomogeneities, such methods require supervision for the individual scan. This paper describes a new method called adaptive segmentation that uses knowledge of tissue intensity properties and intensity inhomogeneities to correct and segment MR images. Use of the EM algorithm leads to a fully automatic method that allows for more accurate segmentation of tissue types as well as better visualization of MRI data, that has proven to be effective in a study that includes more than 1000 brain scans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M Vannier, R. Butterfield, D. Jordan, W. Murphy, et al. Multi-Spectral Analysis of Magnetic Resonance Images. Radiology, (154): 221–224, 1985.

    Google Scholar 

  2. M. Kohn, N. Tanna, G. Herman, et al. Analysis of Brain and Cerebrospinal Fluid Volumes with MR Imaging. Radiology, (178): 115–122, 1991.

    Google Scholar 

  3. G. Gerig, W. Kuoni, R. Kikinis, and O. Kübler. Medical Imaging and Computer Vision: an Integrated Approach for Diagnosis and Planning. In Proc. 11’th DA GM Symposium, pages 425–443. Springer, 1989.

    Google Scholar 

  4. H.E. Cline, W.E. Lorensen, R. Kikinis, and F. Jolesz. Three-Dimensional Segmentation of MR Images of the Head Using Probability and Connectivity. JCAT, 14 (6): 1037–1045, 1990.

    Google Scholar 

  5. R.B. Lufkin, T. Sharpless, B. Flannigan, and W. Hanafee. Dynamic-Range Compression in Surface-Coil MRI. AJR, 147 (379): 379–382, 1986.

    Article  Google Scholar 

  6. L. Axel, J. Costantini, and J. Listerud. Intensity Correction in Surface-Coil MR Imaging. AJR, 148 (4): 418–420, 1987.

    Article  Google Scholar 

  7. K.O. Lim and A. Pfferbaum. Segmentation of MR Brain Images into Cerebrospinal Fluid Spaces, White and Gray Matter. JCAT, 13(4): 588–593, 1989.

    Google Scholar 

  8. B. Dawant, A. Zijdenbos, and R. Margolin. Correction of Intensity Variations in MR Images for Computer-Aided Tissue Classification. IEEE Trans. Med. Imaging, 12 (4): 770–781, 1993.

    Article  Google Scholar 

  9. J. Gohagan, E. Spitznagel, W. Murphy, M Vannier, et al. Multispectral Analysis of MR Images of the Breast. Radiology, (163): 703–707, 1987.

    Google Scholar 

  10. S. Aylward and J. Coggins. Spatially Invariant Classification of Tissues in MR Images. In Proceedings of the Third Conference on Visualization in Biomedical Computing. SPIE, 1994.

    Google Scholar 

  11. M. Kamber, D. Coffins, R. Shinghal, G. Francis, and A. Evans. Model-Based 3D Segmentation of Multiple Sclerosis Lesions in Dual-Echo MRI Data. In SPIE Vol. 1808, Visualization in Biomedical Computing 1992, 1992.

    Google Scholar 

  12. A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm. J. Roy. Statist. Soc., 39: 1–38, 1977.

    MathSciNet  MATH  Google Scholar 

  13. J.S. Lim. Two-Dimensional Signal and Image Processing. Prentice Hall, 1990.

    Google Scholar 

  14. B.R. Frieden. Probability, Statistical Optics, and Data Testing. Springer-Verlag, 1983.

    Google Scholar 

  15. W. Wells, R. Kikinis, W. Grimson, and F. Jolesz. Statistical Intensity Correction and Segmentation of Magnetic Resonance Image Data. In Proceedings of the Third Conference on Visualization in Biomedical Computing. SPIE, 1994.

    Google Scholar 

  16. R. Kikinis, M. Shenton, F.A. Jolesz, G. Gerig, J. Martin, M. Anderson, D. Metcalf, C. Guttmann, R.W. McCarley, W. Lorensen, and H. Cline. Quantitative Analysis of Brain and Cerebrospinal Fluid Spaces with MR Imaging. JMRI, 2: 619–629, 1992.

    Article  Google Scholar 

  17. R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. John Wiley and Sons, 1973.

    Google Scholar 

  18. Ron Kikinis et al. in preparation.

    Google Scholar 

  19. General Electric Medical Systems, Milwaukee, WI.

    Google Scholar 

  20. G. Gerig, O. Kübler, and F. Jolesz. Nonlinear Anisotropic Filtering of MRI data. IEEE Trans. Med. Imaging, (11): 221–232, 1992.

    Google Scholar 

  21. Sun Microsystems Inc., Mountain View, CA.

    Google Scholar 

  22. G. Ettinger, W. Grimson, T. Lozano-Pérez, W. Wells, S. White, and R. Kikinis. Automatic Registration for Multiple Sclerosis Change Detection. In Proceedings of the IEEE Workshop on Biomedical Image Analysis,Seattle, WA., 1994. IEEE.

    Google Scholar 

  23. W.E.L. Grimson, T. Lozano-Pérez, W. Wells, et al. An Automatic Registration Method for Frameless Stereotaxy, Image Guided Surgery, and Enhanced Realigy Visualization. In Proceedings of the Computer Society Conference on Computer Vision and Pattern Recognition,Seattle, WA., June 1994. IEEE.

    Google Scholar 

  24. D. Stark and Jr. W. Bradley, editors. Magnetic Resonance Imaging. Mosby Year Book, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wells, W.M., Grimson, W.E.L., Kikinis, R., Jolesz, F.A. (1995). Adaptive Segmentation of MRI Data. In: Ayache, N. (eds) Computer Vision, Virtual Reality and Robotics in Medicine. CVRMed 1995. Lecture Notes in Computer Science, vol 905. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49197-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49197-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59120-7

  • Online ISBN: 978-3-540-49197-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics