Nothing Special   »   [go: up one dir, main page]

Skip to main content

Improved Duplication Models for Proteome Network Evolution

  • Conference paper
Systems Biology and Regulatory Genomics (RSB 2005, RRG 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4023))

Included in the following conference series:

Abstract

Protein-protein interaction networks, particularly that of the yeast S. Cerevisiae, have recently been studied extensively. These networks seem to satisfy the small world property and their (1-hop) degree distribution seems to form a power law. More recently, a number of duplication based random graph models have been proposed with the aim of emulating the evolution of protein-protein interaction networks and satisfying these two graph theoretical properties. In this paper, we show that the proposed model of Pastor-Satorras et al. does not generate the power law degree distribution with exponential cutoff as claimed and the more restrictive model by Chung et al. cannot be interpreted unconditionally. It is possible to slightly modify these models to ensure that they generate a power law degree distribution. However, even after this modification, the more general k-hop degree distribution achieved by these models, for k > 1, are very different from that of the yeast proteome network. We address this problem by introducing a new network growth model that takes into account the sequence similarity between pairs of proteins (as a binary relationship) as well as their interactions. The new model captures not only the k-hop degree distribution of the yeast protein interaction network for all k > 0, but it also captures the 1-hop degree distribution of the sequence similarity network, which again seems to form a power law.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aiello, W., Chung, F., Lu, L.: A random graph model for power law graphs. In: Proc. ACM STOC, pp. 171–180. ACM Press, New York (2000)

    Google Scholar 

  2. Aiello, W., Chung, F., Lu, L.: Random evolution in massive graphs. In: Proc. FOCS, pp. 510–519 (2001)

    Google Scholar 

  3. Balakrishnan, R., Christie, K.R., Costanzo, M.C., Dolinski, K., Dwight, S.S., Engel, S.R., Fisk, D.G., Hirschman, J.E., Hong, E.L., Nash, R., Oughtred, R., Skrzypek, M., Theesfeld, C.L., Binkley, G., Lane, C., Schroeder, M., Sethuraman, A., Dong, S., Weng, S., Miyasato, S., Andrada, R., Botstein, D., Cherry, J.M.: Saccharomyces Genome Database (April 1, 2004), ftp://ftp.yeastgenome.org/yeast/

  4. Barabási, A.-L., Albert, R.A.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  5. Bebek, G., Berenbrink, P., Cooper, C., Friedetzky, T., Nadeau, J.H., Sahinalp, S.C.: The degree distribution of the generalized duplication model. Theoretical Computer Science 369, 234–249 (2006)

    Article  MathSciNet  Google Scholar 

  6. Berger, N., Bollobás, B., Borgs, C., Chayes, J., Riordan, O.: Degree distribution of the FKP network model. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 725–738. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Bhan, A., Galas, D.J., Dewey, T.G.: A duplication growth model of gene expression networks. Bioinformatics 18, 1486–1493 (2002)

    Article  Google Scholar 

  8. Bollobás, B., Borgs, C., Chayes, J., Riordan, O.: Directed scale-free graphs. In: Proc. ACM-SIAM SODA, pp. 132–139. ACM Press, New York (2003)

    Google Scholar 

  9. Bollobás, B., Riordan, O., Spencer, J., Tusanády, G.: The degree sequence of a scale-free random graph process. Random Structures and Algorithms 18, 279–290 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chung, F., Lu, L., Dewey, T.G., Galas, D.J.: Duplication models for biological networks. Journal of Computational Biology 10, 677–687 (2003)

    Article  Google Scholar 

  11. Cooper, C., Frieze, A.: A general model of webgraphs. Random Structures and Algorithms 22(3), 311–335 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deane, C.M., Salwinski, L., Xenarios, I., Eisenberg, D.: Protein interactions: Two methods for assessment of the reliability of high-throughput observations. Molecular and Cellular Proteomics 1, 349–356 (2002)

    Article  Google Scholar 

  13. Erdös, P., Rényi, A.: On random graphs I. Publicationes Mathematicae Debrecen 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  14. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On Power-Law Relationships of the Internet Topology. In: SIGCOMM (1999)

    Google Scholar 

  15. Ferrer i Cancho, R., Janssen, C.: The small world of human language. Procs. Roy. Soc. London B 268, 2261–2266 (2001)

    Article  Google Scholar 

  16. Force, A., Lynch, M., Pickett, F.B., Amores, A., Yan, Y., Postlethwait, J.: Preservation of duplicate genes by complementary degenerative mutations. Genetics 151, 1531–1545 (1999)

    Google Scholar 

  17. Han, J.D., Dupuy, D., Bertin, N., Cusick, M., Vidal, M.: Effects of sampling on the predicted topology of interactome networks. Nature Biotechnology 23, 839–844 (2005)

    Article  Google Scholar 

  18. Ispolatov, I., Krapivsky, P.L., Yuryev, A.: Duplication-divergence model of protein interaction network. Physical Review, E 71, 061911 (2005)

    Google Scholar 

  19. Ito, T., et al.: A Comprehensive two-hybrid analysis to explore the yeast protein interactome. PNAS 98(8), 4569 (2001)

    Article  Google Scholar 

  20. Jeong, H., Mason, S., Barabasi, A.-L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411, 41 (2001)

    Article  Google Scholar 

  21. Kleinberg, J., Kumar, R., Raphavan, P.P., Rajagopalan, S., Tomkins, A.: The Web as a graph: Measurements, models and methods. In: Proc. COCOON, Tokyo, Japan, pp. 1–17 (1999)

    Google Scholar 

  22. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the web graph. In: Proc. FOCS, pp. 57–65 (2000)

    Google Scholar 

  23. Nadeau, J.H., Sankoff, D.: Comparable Rates of Gene Loss and Functional Divergence After Genome Duplications Early in Vertebrate Evolution. Genetics 147, 1259 (1997)

    Google Scholar 

  24. van Noort, V., Snel, B., Huymen, M.A.: The yeast coexpression network has a small-world scale-free architecture and can be explained by a simple model. EMBO Reports 5(3) (2004)

    Google Scholar 

  25. Ohno, S.: Evolution by gene duplication. Springer, Berlin (1970)

    Google Scholar 

  26. Pastor-Satorras, R., Smith, E., Sole, R.V.: Evolving protein interaction networks through gene duplication. J. Theor. Biol. 222, 199–210 (2003)

    Article  MathSciNet  Google Scholar 

  27. Pearson, W.R., Lipman, D.J.: Fasta. ftp://ftp.virginia.edu/pub/fasta/ (data of access)

  28. Przulj, N., Corneil, D.G., Jurisica, I.: Modeling Interactome: Scale-Free or Geometric? Bioinformatics 20(18), 3508–3515 (2004)

    Article  Google Scholar 

  29. Redner, S.: How Popular is Your Paper? An Empirical Study of the Citation Distribution. Eur. Phys. Jour. B 4, 131–134 (1998)

    Google Scholar 

  30. Seoighe, C., Wolfe, K.H.: Yeast genome evolution in the post-genome era. Current Opinion in Mol. Biol. 2, 548–554 (1999)

    Google Scholar 

  31. Seoighe, C., Wolfe, K.H.: Updated map of duplicated regions in the yeast genome. Gene 238(1), 253–261 (1999)

    Article  Google Scholar 

  32. Simon, H.A.: On a class of skew distribution functions. Biometrika 42, 425–440 (1955)

    MathSciNet  MATH  Google Scholar 

  33. Uetz, P.L., et al.: A comprehensive analysis of protein-protein interactions in Saccharomyces Cerevisiae. Nature 403, 623–627 (2000)

    Article  Google Scholar 

  34. Vázquez, A., Flammini, A., Maritan, A., Vespignani, A.: Modelling of protein interaction networks. Complexus 1, 38–44 (2003)

    Article  Google Scholar 

  35. Wagner, A.: The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol. Biol. Evol. 18, 1283–1292 (2001)

    Google Scholar 

  36. Watts, D.J., Strogatz, S.H.: Colective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  37. Wolfe, K.H., Shields, D.C.: Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708–713 (1997)

    Article  Google Scholar 

  38. Xenarios, I., et al.: DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30, 303–305 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eleazar Eskin Trey Ideker Ben Raphael Christopher Workman

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Bebek, G., Berenbrink, P., Cooper, C., Friedetzky, T., Nadeau, J.H., Sahinalp, S.C. (2007). Improved Duplication Models for Proteome Network Evolution. In: Eskin, E., Ideker, T., Raphael, B., Workman, C. (eds) Systems Biology and Regulatory Genomics. RSB RRG 2005 2005. Lecture Notes in Computer Science(), vol 4023. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48540-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48540-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48293-2

  • Online ISBN: 978-3-540-48540-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics