Nothing Special   »   [go: up one dir, main page]

Skip to main content

Minimum Message Length Criterion for Second-Order Polynomial Model Selection Applied to Tropical Cyclone Intensity Forecasting

  • Conference paper
Advances in Intelligent Data Analysis V (IDA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2810))

Included in the following conference series:

  • 1714 Accesses

Abstract

This paper outlines a body of work that tries to merge polynomial model selection research and tropical cyclone forecasting research. The contributions of the work are four-fold. First, a new criterion based on the Minimum Message Length principle specifically formulated for the task of polynomial model selection up to the second order is presented. Second, a programmed optimisation search algorithm for second-order polynomial models that can be used in conjunction with any model selection criterion is developed. Third, critical examinations of the differences in performance of the various criteria when applied to artificial vis-a-vis to real tropical cyclone data are conducted. Fourth, a novel strategy which uses a synergy between the new criterion built based on the Minimum Message Length principle and other model selection criteria namely, Minimum Description Length, Corrected Akaike’s Information Criterion, Structured Risk Minimization and Stochastic Complexity is proposed. The forecasting model developed using this new automated strategy has better performance than the benchmark models SHIFOR (Statistical HurrIcane FORcasting) [4] and SHIFOR94 [8] which are being used in operation in the Atlantic basin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akaike, H.: Information theory and an extension of the Maximum Likelihood principle. In: Petrov, B.N., Csaki, F. (eds.) Proc. of 2nd Int. Symp. Information Thy., pp. 267–281 (1973)

    Google Scholar 

  2. Allen, D.M.: The relationship between variable selection and data augmentation and a method for prediction. Ann. Inst. Statist. Math. 21, 243–247 (1974)

    Google Scholar 

  3. Bozdogan, H.: Model selection and akaike’s information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52(3), 345–370 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jarvinen, B.R., Neumann, C.J.: Statistical forecasts of tropical cyclone intensity. Technical Report Tech. Memo. NWS NHC-10, National Oceanic and Atmospheric Administration (NOAA), Miami, Florida (1979)

    Google Scholar 

  5. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Springer, New York (1988)

    MATH  Google Scholar 

  6. Craven, P., Wahba, G.: Smoothing noisy data with spline functions. Numerische Mathematik 31, 377–403 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ezekiel, M.: Methods of Correlation Analysis. Wiley, New York (1930)

    MATH  Google Scholar 

  8. Landsea, C.W.: SHIFOR94 – Atlantic tropical cyclone intensity forecasting. In: Proceedings of the 21st Conference on Hurricanes and Tropical Meteorology, Miami, Florida, pp. 365–367. American Meteorological Society (1995)

    Google Scholar 

  9. DeMaria, M., Kaplan, J.: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Weather and Forecasting 9(2), 209–220 (1994)

    Article  Google Scholar 

  10. Mallows, C.: Some comments on Cp. Technometrics 15, 661–675 (1973)

    Article  MATH  Google Scholar 

  11. Miller, A.J.: Subset Selection in Regression. Chapman and Hall, London (1990)

    MATH  Google Scholar 

  12. Neumann, C.J.: An alternate to the HURRAN tropical cyclone forecasting system. Technical Memo NWS-62, NOAA (1972)

    Google Scholar 

  13. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)

    Article  MATH  Google Scholar 

  14. Rissanen, J.: Stochastic complexity. Journal of the Royal Statistical Society B 49(1), 223–239 (1987)

    MathSciNet  MATH  Google Scholar 

  15. Rumantir, G.W.: Minimum Message Length criterion for second-order polynomial model discovery. In: Terano, T., Chen, A.L.P. (eds.) PAKDD 2000. LNCS (LNAI), vol. 1805, pp. 40–48. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Rumantir, G.W.: Tropical cyclone intensity forecasting model: Balancing complexity and goodness of fit. In: Mizoguchi, R., Slaney, J.K. (eds.) PRICAI 2000. LNCS (LNAI), vol. 1886, pp. 230–240. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Rumantir, G.W., Wallace, C.S.: Sampling of highly correlated data for polynomial regression and model discovery. In: Hoffmann, F., Adams, N., Fisher, D., Guimarães, G., Hand, D.J. (eds.) IDA 2001. LNCS, vol. 2189, pp. 370–377. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Ryan, T.: Modern Regression Methods. John Wiley & Sons, New York (1997)

    MATH  Google Scholar 

  19. Schwarz, G.: Estimating the dimension of a model. Annals of Statistics 6, 461–464 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  21. Wallace, C.S., Freeman, P.R.: Estimation and inference by compact coding. Journal of the Royal Statistical Society B 49(1), 240–252 (1987)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rumantir, G.W., Wallace, C.S. (2003). Minimum Message Length Criterion for Second-Order Polynomial Model Selection Applied to Tropical Cyclone Intensity Forecasting. In: R. Berthold, M., Lenz, HJ., Bradley, E., Kruse, R., Borgelt, C. (eds) Advances in Intelligent Data Analysis V. IDA 2003. Lecture Notes in Computer Science, vol 2810. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45231-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45231-7_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40813-0

  • Online ISBN: 978-3-540-45231-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics