Abstract
Recent work in knowledge representation undertaken as part of the Semantic Web initiative has enabled a common infrastructure (Resource Description Framework (RDF) and RDF Schema) for sharing knowledge of ontologies and instances. In this paper we present a framework for combining the shallow levels of semantic description commonly used in MUC-style information extraction with the deeper semantic structures available in such ontologies. The framework is implemented within the PIA project software called Ontology Forge. Ontology Forge offers a server-based hosting environment for ontologies, a server-side information extraction system for reducing the effort of writing annotations and a many-featured ontology/annotation editor. We discuss the knowledge framework, some features of the system and summarize results from extended named entity experiments designed to capture instances in texts using support vector machine software.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berners-Lee, T., Fischetti, M., Dertouzos, M.: Weaving the Web: The Original Design and Ultimate Destiny of the World Wide Web. Harper, San Francisco (September 1999) ISBN: 0062515861
Brickley, D., Guha, R.V.: Resource Description Framework (RDF) schema specification 1.0. W3C candidate recommendation (March 27 2000), http://www.w3.org/TR/2000/CR-rdf-schema-20000327
Brill, E.: A simple rule-based part of speech tagger. In: Third Conference on Applied Natural Language Processing – Association for Computational Linguistics, Trento, Italy, pp. 152–155, March 31 - April 3 (1992)
Collier, N., Nobata, C., Tsujii, J.: Extracting the names of genes and gene products with a hidden Markov model. In: Proceedings of the 18th International Conference on Computational Linguistics (COLING’2000), Saarbrucken, Germany, July 31 - August 4 (2000)
Collier, N., Takeuchi, K., Nobata, C., Fukumoto, J., Ogata, N.: Progress on multi-lingual named entity annotation guidelines using RDF(S). In: Proceedings of the Third International Conference on Language Resources and Evaluation (LREC 2002), Las Palmas, Spain, May 27 -June 22, pp. 2074–2081 (2002)
Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297 (1995)
DARPA. Information Extraction Task Definition, Columbia, MD, USA. Morgan Kaufmann, San Francisco (November 1995)
Dublin core metadata element set, version 1.1: Reference description. Technical Report, Dublin Core Metadata Initiative (1999), http://purl.org/DC/documents/recdces19990702.htm
Handschuh, S., Staab, S., Maedche, A.: CREAM - creating relational metadata with a component-based, ontology-driven annotation framework. In: First International Conference on Knowledge Capture (K-CAP 2001), Victoria, B.C., Canada, October 21 - 23 (2001)
Joachims, T.: Making large-scale SVM learning practical. In: Scholkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge (1999)
Kahan, J., Koivunen, M.R., Prud’Hommeaux, E., Swick, R.R.: Annotea: An open RDF infrastructure for shared web annotations. In: The Tenth International World Wide Web Conference (WWW10), vol. 5, pp. 623–630 (2000)
Kawazoe, A., Collier, N.: An ontologically-motivated scheme for coreference. In: Proceedings of the International Workshop on Semantic Web Foundations and Application Technologies (SWFAT), Nara, Japan, March 12 (2003)
Noy, N.F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R.W., Musen, M.A.: Creating semantic web contents with Protégé 2000. IEEE Intelligent Systems 16(2), 60–71 (2001)
Tateishi, Y., Ohta, T., Collier, N., Nobata, C., Ibushi, K., Tsujii, J.: Building an annotated corpus in the molecular-biology domain. In: COLING 2000 Workshop on Semantic Annotation and Intelligent Content, Luxemburg, August 5 - 6 (2000)
van Rijsbergen, C.J.: Information Retrieval. Butterworths, London (1979)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Collier, N., Takeuchi, K., Kawazoe, A., Mullen, T., Wattarujeekrit, T. (2003). A Framework for Integrating Deep and Shallow Semantic Structures in Text Mining. In: Palade, V., Howlett, R.J., Jain, L. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2003. Lecture Notes in Computer Science(), vol 2773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45224-9_110
Download citation
DOI: https://doi.org/10.1007/978-3-540-45224-9_110
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40803-1
Online ISBN: 978-3-540-45224-9
eBook Packages: Springer Book Archive