Nothing Special   »   [go: up one dir, main page]

Skip to main content

Recommendation System Based on the Discovery of Meaningful Categorical Clusters

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2003)

Abstract

We propose in this paper a recommendation system based on a new method of clusters discovery which allows a user to be present in several clusters in order to capture his different centres of interest. Our system takes advantage of content-based and collaborative recommendation approaches. The system is evaluated by using proxy server logs, and encouraging results were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balabanovic, M.: An Adaptive Web Page Recommendation Service. In: The 1st International Conference on Autonomous Agents, Marina del Rey, CA, USA, February 1997, pp. 378–385 (1997)

    Google Scholar 

  2. Durand, N., Crémilleux, B.: ECCLAT: a New Approach of Clusters Discovery in Categorical Data. In: the 22nd Int. Conf. on Knowledge Based Systems and Applied Artificial Intelligence (ES 2002), Cambridge, UK, December 2002, pp. 177–190 (2002)

    Google Scholar 

  3. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using Collaborative Filtering to Weave an Information Tapestry. Communication of the ACM 35(12), 61–70 (1992)

    Article  Google Scholar 

  4. Joachims, T., Freitag, D., Mitchell, T.: WebWatcher: A Tour Guide for the World Wide Web. In: The 15th Int. Joint Conference on Artificial Intelligence (IJCAI 1997), Nagoya, Japan, August 1997, pp. 770–775 (1997)

    Google Scholar 

  5. Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.: GroupLens: Applying Collaborative Filtering to Usenet News. Communication of the ACM 40(3), 77–87 (1997)

    Article  Google Scholar 

  6. Lieberman, H.: Letizia: An Agent that Assists Web Browsing. In: The Fourteenth International Joint Conference on Artificial Intelligence (IJCAI 1995), Canada, August 1995, pp. 924–929 (1995)

    Google Scholar 

  7. Mobasher, B., Cooley, R., Srivastava, J.: Creating Adaptive Web Sites through Usage-Based Clustering of URLs. In: IEEE Knowledge and Data Engineering Exchange Workshop (KDEX 1999), Chicago (November 1999)

    Google Scholar 

  8. Moukas, A.: Amalthaea: Information Discovery and Filtering Using a Multi-Agent Evolving Ecosystem. International Journal of Applied Artificial Intelligence 11(5), 437–457 (1997)

    Article  Google Scholar 

  9. Ngu, D.S.W., Wu, X.: SiteHelper: A Localized Agent that Helps Incremental Exploration of the World Wide Web. In: The 6th international World Wide Web Conference, Santa Clara, CA, pp. 691–700 (1997)

    Google Scholar 

  10. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient Mining of Association Rules Using Closed Itemset Lattices. Information Systems 24(1), 25–46 (1999)

    Article  Google Scholar 

  11. Pazzani, M.: A Framework for Collaborative, Content-Based and Demographic Filtering. Artificial Intelligence Review 13(5), 393–408 (1999)

    Article  Google Scholar 

  12. Pazzani, M., Muramatsu, J., Billsus, D.: Syskill & Webert: Identifying interesting web sites. In: Proceedings of the 13th National Conference on Artificial Intelligence, Portland, Oregon, pp. 54–61 (1996)

    Google Scholar 

  13. Spiliopoulou, M.: Web Usage Mining for Web site Evaluation. Com. of the ACM 43(8), 127–134 (2000)

    Article  Google Scholar 

  14. Wilson, D., Smyth, B., O’Sullivan, D.: Improving Collaborative Personalized TV Services. In: The 22nd Int. Conf. on Knowledge Based Systems and Applied Artificial Intelligence (ES 2002), Cambridge, UK, December 2002, pp. 265–278 (2002)

    Google Scholar 

  15. Wu, Y.H., Chen, Y.C., Chen, A.L.P.: Enabling Personalized Recommendation on the Web Based on User Interests and Behaviors. In: The 11th Int. Workshop on Research Issues in Data Engineering (RIDE-DM 2001), Heidelberg, Germany, April 2001, pp. 17–24 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Durand, N., Lancieri, L., Crémilleux, B. (2003). Recommendation System Based on the Discovery of Meaningful Categorical Clusters. In: Palade, V., Howlett, R.J., Jain, L. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2003. Lecture Notes in Computer Science(), vol 2773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45224-9_114

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45224-9_114

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40803-1

  • Online ISBN: 978-3-540-45224-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics