Abstract
In this paper, we present a vascular tree model made with synthetic materials and which allows us to obtain images to make a 3D reconstruction. We have used PVC tubes of several diameters and lengths that will let us evaluate the accuracy of our 3D reconstruction. In order to calibrate the camera we have used a corner detector. Also we have used Optical Flow techniques to follow the points through the images going and going back. We describe two general techniques to extract a sequence of corresponding points from multiple views of an object. The resulting sequence of points will be used later to reconstruct a set of 3D points representing the object surfaces on the scene. We have made the 3D reconstruction choosing by chance a couple of images and we have calculated the projection error. After several repetitions, we have found the best 3D location for the point.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alvarez, L., Weickert, J., Sanchez, J.: Reliable estimation of dense optical flow fields with large displacements. International Journal of Computer Vision 39(1), 41–56 (2000)
Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Computing Surveys 27(3), 433–467 (1995)
Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Cambridge (1993)
Faugeras, O., Keriven, R.: Complete dense stereovision using level set methods. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, p. 379. Springer, Heidelberg (1998)
Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)
Op de Beek, J., Koppe, R., Klotz, E., Moret, J., Kemkers, R., Grass, M.: 3d rotational angiography: Clinic value in endovascular treatment.
Cuenca, C., Álvarez, L., Mazorra, L.: Calibración de multiples cámaras utilizando objetos de calibración esféricos. In: Rionda, A.B., Otero, R.P. (eds.) IX Conferencia de la Asociación Española para la Inteligencia Artificial and IV Jornadas de Transferencia Tecnológica de Inteligencia Artificial, CAEPIA-TTIA 2001. Asociación Española para la Inteligencia Artificial and Centro de Inteligencia Artificial de la Universidad de Oviedo, pp. 1281–1290 (2001)
Cuenca, C., Esclarín, J., Álvarez, L., Baños, K., Sánchez, J.: 3d reconstruction from a vascular tree model. In: Moreno-Díaz Jr., R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 105–106. Springer, Heidelberg (2003); Instituto Universitario de Ciencias y Tecnologías Cibernéticas de la Universidad de Las Palmas de Gran Canaria
Nagel, H.-H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from images sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(5), 565–593 (1986)
D’Herde, B., Storme, L., Vanrusselt, J., Peene, P., Cleeren, P., Souverijns, G.: Non substracted rotational angiography on a multipropose digital carm radiography system
Robert, L., Deriche, R.: Dense depth map reconstruction: A minimization and regularization approach which preserves discontinuities. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 439–451. Springer, Heidelberg (1996)
Trucco, E., Verri, A.: Introductory Techniques for 3-D Computer Vision. Prentice-Hall, Inc, Upper Saddle River (1998)
Weickert, J.: Anisotropic diffusion in image processing
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Álvarez, L., Baños, K., Cuenca, C., Esclarín, J., Sánchez, J. (2003). 3D Reconstruction from a Vascular Tree Model. In: Moreno-Díaz, R., Pichler, F. (eds) Computer Aided Systems Theory - EUROCAST 2003. EUROCAST 2003. Lecture Notes in Computer Science, vol 2809. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45210-2_56
Download citation
DOI: https://doi.org/10.1007/978-3-540-45210-2_56
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20221-9
Online ISBN: 978-3-540-45210-2
eBook Packages: Springer Book Archive