Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Efficient Algorithm for Multiple Sclerosis Lesion Segmentation from Brain MRI

  • Conference paper
Computer Aided Systems Theory - EUROCAST 2003 (EUROCAST 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2809))

Included in the following conference series:

Abstract

We propose a novel method for the segmentation of Multiple Sclerosis (MS) lesions in MRI. The method is based on a three-step approach: first a conventional k-NN classifier is applied to pre-classify gray matter (GM), white matter (WM), cerebro-spinal fluid (CSF) and MS lesions from a set of prototypes selected by an expert. Second, the classification of problematic patterns is resolved computing a fast distance transformation (DT) algorithm from the set of prototypes in the Euclidean space defined by the MRI dataset. Finally, a connected component filtering algorithm is used to remove lesion voxels not connected to the real lesions. This method uses distance information together with intensity information to improve the accuracy of lesion segmentation and, thus, it is specially useful when MS lesions have similar intensity values than other tissues. It is also well suited for interactive segmentations due to its efficiency. Results are shown on real MRI data as wall as on a standard database of synthetic images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Warfield, S., Kaus, M., Jolesz, F., Kikinis, R.: Adaptive, template moderated, spatially varying statistical classification. Medical Image Analisys 4, 43–55 (2000)

    Article  Google Scholar 

  2. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory IT-13(1), 21–27 (1967)

    Article  Google Scholar 

  3. Clarke, L., Velthuizen, R., Phuphanich, S., Schellenberg, J., Arrington, J., Silbiger, M.: MRI: Stability of three supervised segmentation techniques. Magnetic Resonance Imaging 11, 95–106 (1993)

    Article  Google Scholar 

  4. Friedman, J., Baskett, F., Shustek, L.: An algorithm for finding nearest neighbors. IEEE Trans. on Computers C-24(10), 1000–1006 (1975)

    Article  Google Scholar 

  5. Jian, Q., Zhang, W.: An improved method for finding nearest neighbors. Pattern Recognition Letters 14, 531–535 (1993)

    Article  Google Scholar 

  6. Fukunaga, K., Narendra, P.: A branch and bound algorithm for computing knearest neighbors. IEEE Transactions On Computers C-24, 750–753 (1975)

    Article  MathSciNet  Google Scholar 

  7. Warfield, S.: Fast k-nn classification for multichannel image data. Pattern Recognition Letters 17(7), 713–721 (1996)

    Article  Google Scholar 

  8. Cuisenaire, O., Macq, B.: Fast k-nn classification with an optimal k-distance transformation algorithm. In: Proc. 10th European Signal Processing Conf., pp. 1365–1368 (2000)

    Google Scholar 

  9. Kaus, M.: Contributions to the Automated Segmentation of Brain Tumors in MRI. PhD thesis, Berlin, Germany (2000)

    Google Scholar 

  10. Duda, R., Hart, P.: Pattern Classification and Scene Analysis. John Wiley &amp, Chichester (1973)

    MATH  Google Scholar 

  11. Okabe, A., Boots, B., Sugihara, K.: Spatial Tesselations: Concepts and Applications of Voronoi Diagrams. Wiley, Chichester (1992)

    MATH  Google Scholar 

  12. Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J., Urrutia, G. (eds.) Handbook of Computational Geometry, pp. 201–290. Elsevier Science Publishing, Amsterdam (2000)

    Chapter  Google Scholar 

  13. Verwer, B., Verbeek, P., Dekker, S.: An efficient uniform cost algorithm applied to distance transforms. IEEE Transactions on Pattern Analysis an Machine Intelligence 11(4), 425–429 (1989)

    Article  Google Scholar 

  14. Borgefors, G.: Distance transformations in arbitrary dimensions. Computer Vision, Graphics and Image Processing 27, 321–345 (1984)

    Article  Google Scholar 

  15. Danielsson, P.: Euclidean distance mapping. Comput. Graph. Image Process. 14, 227–248 (1980)

    Article  Google Scholar 

  16. Ragnemalm, I.: The Euclidean distance transform in arbitrary dimensions. Pattern Recognition Letters 14, 883–888 (1993)

    Article  MATH  Google Scholar 

  17. Cocosco, C., Kollokian, V., Kwan, R.S., Evans, A.: Brainweb: online interface to a 3D MRI simulated brain database. Neuroimage 5(425), Copenhagen (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cárdenes, R., Warfield, S.K., Macías, E.M., Santana, J.A., Ruiz-Alzola, J. (2003). An Efficient Algorithm for Multiple Sclerosis Lesion Segmentation from Brain MRI. In: Moreno-Díaz, R., Pichler, F. (eds) Computer Aided Systems Theory - EUROCAST 2003. EUROCAST 2003. Lecture Notes in Computer Science, vol 2809. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45210-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45210-2_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20221-9

  • Online ISBN: 978-3-540-45210-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics