Abstract
In this work we present an study of the application of data mining techniques in an interesting domain, the Integrated Control. We found that in this dynamic domain, non-temporal data mining techniques are not suitable, needing to find a good temporal model. After a comparative study of several candidate models, we propose the use of the inter-transaction approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Buneman, P., Jajodia, S. (eds.) Proc. of the ACM SIGMOD Int. Conf. on Management of Data, Washington, D.C., May 26–28, pp. 207–216. ACM Press, New York (1993)
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) Proc. of 20th Int. Conf. on Very Large Data Bases (VLDB 1994), Santiago de Chile, Chile, September 12–15, pp. 487–499. Morgan Kaufmann, San Francisco (1994)
Agrawal, R., Srikant, R.: Mining sequential patterns. In: Yu, P.S., Chen, A.L.P. (eds.) Proc. of the 11th Int. Conf. on Data Engineering, Taipei, Taiwan, March 6–10, pp. 3–14. IEEE Computer Society, Los Alamitos (1995)
Ale, J.M., Rossi, G.H.: An approach to discovering temporal association rules. In: Proc. of the ACM Symposium on Applied Computing, Villa Olmo, Italy, March 19–21, pp. 294–300. ACM, New York (2000)
Bettini, C., Wang, X.S., Jajodia, S.: Testing complex temporal relationships involving multiple granularities and its application to data mining. In: Proc. of the 15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Montreal, Canada, June 3–5, pp. 68–78. ACM Press, New York (1996)
Bosch, A., Torres, M., Maríin, R.: Reasoning with disjunctive fuzzy temporal constraint networks. In: Proc. of the 9th Int.Symposium on Temporal Representation and Reasoning (TIME 2002), pp. 36–43. IEEE Computer Society, Los Alamitos (2002)
Cañadas, J.J., del Águila, I.M., Bosch, A., Túnez, S.: An intelligent system for therapy control in a distributed organization. In: Shafazand, H., Tjoa, A.M. (eds.) EurAsia-ICT 2002. LNCS, vol. 2510, pp. 19–26. Springer, Heidelberg (2002)
Cheung, D.W., Han, J., Ng, V., Wong, C.Y.: Maintenance of discovered association rules in large databases: An incremental updating technique. In: Stanley, Y.W. (ed.) Proc. of the 12th Int. Conf. on Data Engineering, New Orleans, Louisiana, February 26 – March 1, pp. 106–114. IEEE Computer Society, Los Alamitos (1996)
Fayyad, U., Piatetky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AIMagazine 17(3), 37–54 (1996)
Joshi, M.V., Karypis, G., Kumar, V.: A universal formulation of sequential patterns. In: Proc. of the KDD’2001 Workshop on Temporal Data Mining, 7th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining San Fransisco. ACM, New York (August 2001)
Bayardo Jr., R.J.: Efficiently mining long patterns from databases. In: Haas, L.M., Tiwary, A. (eds.) Proc. of the ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 1998), Seattle, Washington, USA, June 2–4, pp. 85–93. ACM Press, New York (1998)
Bayardo Jr., R.J., Agrawal, R., Gunopulos, D.: Constraint-based rule mining in large, dense databases. In: Proc. of the 15th Int. Conf. on Data Engineering, Sydney, Australia, March 23–26, pp. 188–197. IEEE Computer Society, Los Alamitos (1999)
Kuok, C.M., Fu, A.W.C., Wong, M.H.: Mining fuzzy association rules in databases. SIGMOD Record 27(1), 41–46 (1998)
Lee, J.W., Lee, Y.J., Kim, H.K., Hwang, B.H., Ryu, K.H.: Discovering temporal relation rules mining from interval data. In: Shafazand, H., Tjoa, A.M. (eds.) EurAsia-ICT 2002. LNCS, vol. 2510, pp. 57–66. Springer, Heidelberg (2002)
Li, Y., Ning, P., Wang, X.S., Jajodia, S.: Discovering calendar-based temporal association rules. Data & Knowledge Engineering 44, 193–218 (2003)
Lee, C.H., Lin, C.R., Chen, M.S.: On mining general temporal association rules in a publication database. In: Cercone, N., Lin, T.Y., Wu, X. (eds.) Proc. of the 2001 IEEE Int. Conf. on Data Mining, San Jose, California, USA, November 29- December 2, pp. 337–344. IEEE Computer Society, Los Alamitos (2001)
Lin, D., Kedem, Z.M.: Pincer-search: An efficient algorithm for discovering the maximum frequent set. IEEE Transactions on Knowledge and Data Engineering 14(3), 553–566 (2002)
Lu, H., Feng, L., Han, J.: Beyond intra-transaction association analysis: Mining multi-dimensional inter-transaction association rules. ACM Transactions on Information Systems (TOIS) 18(4), 423–454 (2000)
Lu, H., Han, J., Feng, L.: Stock movement and n-dimensional inter-transaction association rules. In: Proc. of the Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD 1998), Seattle, Washington, June 1998, pp. 121–127 (1998)
Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery 1(3), 259–289 (1997)
Mannila, H.: Local and global methods in data mining: Basic techniques and open problems. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 57–68. Springer, Heidelberg (2002)
Ordonez, C., Santana, C.A., de Braal, L.: Discovering interesting association rules in medical data. In: Gunopulos, D., Rastogi, R. (eds.) Proc. of the ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, Dallas, Texas, USA, May 14, pp. 78–85 (2000)
Özden, B., Ramaswamy, S., Silberschatz, A.: Cyclic association rules. In: Proc. of the 14th Int. Conf. on Data Engineering, Orlando, Florida, USA, February 23–27, pp. 412–421. IEEE Computer Society, Los Alamitos (1998)
Park, J.S., Chen, M.S., Yu, P.S.: An effective hash based algorithm for mining association rules. In: Carey, M.J., Schneider, D.A. (eds.) Proc. of the 1995 ACM SIGMOD Int. Conf. on Management of Data, San Jose, California, May 22–25, pp. 175–186. ACM, New York (1995)
Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q., Dayal, U.: Multi-dimensional sequential pattern mining. In: Proc. of the ACM CIKM Int. Conf. on Information and Knowledge Management, Atlanta, Georgia, USA, November 5-10, pp. 81–88. ACM, New York (2001)
Roddick, J.F., Spiliopoulou, M.: A survey of temporal knowledge discovery paradigms and methods. IEEE Transactions on Knowledge and Data Engineering 14(4), 750–767 (2002)
Srikant, R., Agrawal, R.: Mining generalized association rules. In: Dayal, U., Gray, P.M.D., Nishio, S. (eds.) Proc. of 21th Int. Conf. on Very Large Data Bases (VLDB 1995), Zurich, Switzerland, September 11–15, pp. 407–419. Morgan Kaufmann, San Francisco (1995)
Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational tables. In: Jagadish, H.V., Mumick, I.S. (eds.) Proc. of the 1996 ACM SIGMOD Int. Conf. on Management of Data, Montreal, Quebec, Canada, June 4-6, pp. 1–12. ACM Press, New York (1996)
Tung, A.K.H., Lu, H., Han, J., Feng, L.: Breaking the barrier of transactions: Mining inter-transaction association rules. In: Proc. of the 5th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, San Diego, CA, USA, August 15-18, pp. 297–301. ACM Press, New York (1999)
Tung, A.K.H., Lu, H., Han, J., Feng, L.: Efficient mining of intertransaction association rules. IEEE Transactions on Knowledge and Data Engineering 15(1), 43–56 (2003)
Wang, W., Yang, J., Yu, P.S.: Efficient mining of weighted association rules (war). In: Proc. of the sixth ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, Boston, MA, USA, August 20–23, pp. 270–274. ACM, New York (2000)
Yang, D.L., Pan, C.T., Chung, Y.C.: An efficient hash-based method for discovering the maximal frequent set. In: Proc. of the 25th Int. Computer Software and Applications Conference (COMPSAC 2001), Chicago, IL, USA, October 8–12, pp. 85–93. IEEE Computer Society, Los Alamitos (2001)
Zhou, A., Zhou, S., Wen, J., Tian, Z.: An improved definition of multidimensional inter-transaction association rule. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 104–108. Springer, Heidelberg (1999)
Zhou, Z.-H.: Three perspectives of data mining (book review). Artificial Intelligence 143, 139–146 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guil, F., Bosch, A., Túnez, S., Marín, R. (2003). Temporal Approaches in Data Mining. A Case Study in Agricultural Environment. In: Moreno-Díaz, R., Pichler, F. (eds) Computer Aided Systems Theory - EUROCAST 2003. EUROCAST 2003. Lecture Notes in Computer Science, vol 2809. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45210-2_18
Download citation
DOI: https://doi.org/10.1007/978-3-540-45210-2_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20221-9
Online ISBN: 978-3-540-45210-2
eBook Packages: Springer Book Archive