Abstract
Simulation relations are tools for establishing the correctness of data refinement steps. In the simply-typed lambda calculus, logical relations are the standard choice for simulation relations, but they suffer from certain shortcomings; these are resolved by use of the weaker notion of pre-logical relations instead. Developed from a syntactic setting, abstraction barrier-observing simulation relations serve the same purpose, and also handle polymorphic operations. Meanwhile, second-order pre-logical relations directly generalise pre-logical relations to polymorphic lambda calculus (System F). We compile the main refinement-pertinent results of these various notions of simulation relation, and try to raise some issues for aiding their comparison and reconciliation.
This research was partly supported by the MRG project (IST-2001-33149) which is funded by the EC under the FET proactive initiative on Global Computing. SK was supported by an LFCS studentship.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bainbridge, E., Freyd, P., Scedrov, A., Scott, P.: Functorial polymorphism. Theoretical Computer Science 70, 35–64 (1990)
Bellucci, R., Abadi, M., Curien, P.-L.: A model for formal parametric polymorphism: a PER interpretation for system R. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 32–46. Springer, Heidelberg (1995)
Bidoit, M., Hennicker, R., Wirsing, M.: Behavioural and abstractor specifications. Science of Computer and Programming 25, 149–186 (1995)
Böhm, C., Berarducci, A.: Automatic synthesis of typed λ-programs on term algebras. Theoretical Computer Science 39, 135–154 (1985)
Bruce, K., Meyer, A., Mitchell, J.: The semantics of the second-order lambda calculus. Information and Computation 85(1), 76–134 (1990)
Girard, J.-Y.: Une extension de l’interprétation de Gödel à l’analyse, et son application à l’élimination des coupures dans l’analyse et la théorie des types. In: Proc. 2nd Scandinavian Logic Symp., Oslo. Studies in Logic and the Foundations of Mathematics, vol. 63, pp. 63–92. North-Holland, Amsterdam (1971)
Girard, J.-Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University Press, Cambridge (1990)
Hannay, J.: Specification refinement with System F. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 530–545. Springer, Heidelberg (1999)
Hannay, J.: A higher-order simulation relation for System F. In: Tiuryn, J. (ed.) FOSSACS 2000. LNCS, vol. 1784, pp. 130–145. Springer, Heidelberg (2000)
Hannay, J.: Abstraction Barriers and Refinement in the Polymorphic Lambda Calculus. PhD thesis, Laboratory for Foundations of Computer Science (LFCS), University of Edinburgh (2001)
Hannay, J.: Abstraction barrier-observing relational parametricity. In: Hofmann, M.O. (ed.) TLCA 2003. LNCS, vol. 2701, pp. 135–152. Springer, Heidelberg (2003)
Hasegawa, R.: Parametricity of extensionally collapsed term models of polymorphism and their categorical properties. In: Ito, T., Meyer, A.R. (eds.) TACS 1991. LNCS, vol. 526, pp. 495–512. Springer, Heidelberg (1991)
Hoare, C.A.R.: Proof of correctness of data representations. Acta Informatica 1, 271–281 (1972)
Hofmann, M., Sannella, D.: On behavioural abstraction and behavioural satisfaction in higher-order logic. Theoretical Computer Science 167, 3–45 (1996)
Honsell, F., Longley, J., Sannella, D., Tarlecki, A.: Constructive data refinement in typed lambda calculus. In: Tiuryn, J. (ed.) FOSSACS 2000. LNCS, vol. 1784, pp. 161–176. Springer, Heidelberg (2000)
Honsell, F., Sannella, D.: Prelogical relations. CSL 1999 178, 23–43 (2002); Short version In: Proc. Computer Science Logic, CSL 1999, Madrid. Springer LNCS 1683, pp. 546-561 (1999)
Katsumata, S.: Behavioural equivalence and indistinguishability in higher-order typed languages. Selected papers from the 16th Intl. Workshop on Algebraic Development Techniques, Frauenchiemsee. Springer LNCS (2003) (to appear)
Leiß, H.: Second-order pre-logical relations and representation independence. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 298–314. Springer, Heidelberg (2001)
Ma, Q., Reynolds, J.: Types, abstraction and parametric polymorphism, part 2. In: Schmidt, D., Main, M.G., Melton, A.C., Mislove, M.W., Brookes, S.D. (eds.) MFPS 1991. LNCS, vol. 598, pp. 1–40. Springer, Heidelberg (1991)
Mairson, H.: Outline of a proof theory of parametricity. In: Hughes, J. (ed.) FPCA 1991. LNCS, vol. 523, pp. 313–327. Springer, Heidelberg (1991)
Milner, R.: An algebraic definition of simulation between programs. In: Proc. 2nd Intl. Joint Conf. on Artificial Intelligence, pp. 481–489. British Computer Society (1971)
Mitchell, J.: Foundations for Programming Languages. MIT Press, Cambridge (1996)
Mitchell, J., Plotkin, G.: Abstract types have existential type. ACM Trans. on Programming Languages and Systems 10(3), 470–502 (1988)
Plotkin, G., Abadi, M.: A logic for parametric polymorphism. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 361–375. Springer, Heidelberg (1993)
Plotkin, G., Power, J., Sannella, D., Tennent, R.: Lax logical relations. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 85–102. Springer, Heidelberg (2000)
Reynolds, J.: Towards a theory of type structures. In: Robinet, B. (ed.) Programming Symposium. LNCS, vol. 19, pp. 408–425. Springer, Heidelberg (1974)
Reynolds, J.: The Craft of Programming. Prentice Hall, Englewood Cliffs (1981)
Reynolds, J.: Types, abstraction and parametric polymorphism. In: Proc. 9th IFIP World Computer Congress, Paris, pp. 513–523. North Holland, Amsterdam (1983)
Robinson, E., Rosolini, G.: Reflexive graphs and parametric polymorphism. In: Proc. Ninth Annual IEEE Symposium on Logic in Computer Science, Paris, pp. 364–371. IEEE Computer Society Press, Los Alamitos (1994)
Sannella, D., Tarlecki, A.: Essential concepts of algebraic specification and program development. Formal Aspects of Computing 9, 229–269 (1997)
Schoett, O.: Behavioural correctness of data representations. Science of Computer Programming 14, 43–57 (1990)
Strachey, C.: Fundamental concepts in programming languages. Lecture notes from the Intl. Summer School in Programming Languages, Copenhagen (1967)
Tennent, R.: Correctness of data representations in Algol-like languages. In: A Classical Mind: Essays in Honour of C.A.R. Hoare, Prentice Hall, Englewood Cliffs (1994)
Takeuti, I.: An axiomatic system of parametricity. Fundamenta Informaticae 33(4), 397–432 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hannay, J., Katsumata, Sy., Sannella, D. (2003). Semantic and Syntactic Approaches to Simulation Relations. In: Rovan, B., Vojtáš, P. (eds) Mathematical Foundations of Computer Science 2003. MFCS 2003. Lecture Notes in Computer Science, vol 2747. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45138-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-45138-9_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40671-6
Online ISBN: 978-3-540-45138-9
eBook Packages: Springer Book Archive