Nothing Special   »   [go: up one dir, main page]

Skip to main content

Tunnelling Descent: A New Algorithm for Active Contour Segmentation of Ultrasound Images

  • Conference paper
Information Processing in Medical Imaging (IPMI 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2732))

Abstract

The presence of speckle in ultrasound images makes it hard to segment them using active contours. Speckle causes the energy function of the active contours to have many local minima, and the gradient descent procedure used for evolving the contour gets trapped in these minima.

A new algorithm, called tunnelling descent, is proposed in this paper for evolving active contours. Tunnelling descent can jump out of many of the local minima that gradient descent gets trapped in. Experimental results with 70 short axis cardiac ultrasound images show that tunnelling descent has no trouble finding the blood-tissue boundary (the endocardium). This holds irrespective of whether tunnelling descent is initialized in blood or tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Basseville, M., Nikiforov, I.V.: Detection of Abrupt Changes, Theory and application. PTR Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  2. Tao, Z., Beaty, J., Jaffe, C.C., Tagare, H.D.: Gray level models for segmentating myocardium and blood in cardiac ultrasound images. In: Proceedings ISBI 2002 (2002)

    Google Scholar 

  3. Wagner. R. F., Insana, M. F., Brown, D. G., Statistical properties of radiofrequency and envelope-detected signals with applications to medical ultrasound. J. Opt. Soc. Am. A 4(5), (1987)

    Google Scholar 

  4. Wagner, R.F., Smith, S.W., Sandrick, J.M., Lopez, H.: Statistics of speckles in ultrasound B-scans. IEEE. Trans. Son. Ultra. 30, 156–163 (1983)

    Article  Google Scholar 

  5. Xiao, G., Brady, M., Noble, J., Zhang, Y.: Segmentation of Ultrasound B-Mode images with intensity inhomogeneity correction. IEEE Trans. Medical Imaging 21(1), 48–57 (2002)

    Article  Google Scholar 

  6. Evans, A., Nixon, M.: Biased motion-adaptive temporal filtering for speckle reduction in echocardiography. IEEE Trans. Medical Imaging 15(1), 39–50 (1996)

    Article  Google Scholar 

  7. Zong, X., Laine, A., Geiser, E.: Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing. IEEE Trans. Medical Imaging 17(4), 532–540 (1998)

    Article  Google Scholar 

  8. Angelini, E.D., Laine, A.F., Takuma, S., Holmes, J.W., Homma, S.: LV volume quantification via spatio temporal analysis of real-time 3-D echocardiography. IEEE Trans. Medical Imaging 20, 457–469 (2001)

    Article  Google Scholar 

  9. Bosch, J., Mitchell, S., Lelieveldt, B., Nijland, F., Kamp, O., Sonka, M., Reober, J.: Fully automated endocardial contour detection in time sequences of echocardiograms by active appearance motion models. Computers in Cardiology 2001, pp. 93–96 (2001)

    Google Scholar 

  10. Hao, X., Bruce, C.J., Pislaru, C., Greenleaf, J.F.: Segmenting high-frequency intracardiac ultrasound images of myocardium into infarcted, ischemic, and normal regions. IEEE Tran. Medical Imaging 20(12), 1371–1383 (2001)

    Google Scholar 

  11. Mulet-Parada, M., Noble, J.A.: Intensity-invariant 2D+T acoustic boundary detection. In: Proceedings, Workshop on Biomedical Image Analysis, June 1998, pp. 133–142 (1998)

    Google Scholar 

  12. Mikic, I., Krucinski, S., Thomas, J.D.: Segmentation and tracking in echocardiographic sequences: active contours guided by optical flow estimates. IEEE Trans. Medical Imaging 17(2), 274–284 (1998)

    Article  Google Scholar 

  13. Wald, A.: Sequential Analysis. Dover Publications, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tao, Z., Jaffe, C.C., Tagare, H.D. (2003). Tunnelling Descent: A New Algorithm for Active Contour Segmentation of Ultrasound Images. In: Taylor, C., Noble, J.A. (eds) Information Processing in Medical Imaging. IPMI 2003. Lecture Notes in Computer Science, vol 2732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45087-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45087-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40560-3

  • Online ISBN: 978-3-540-45087-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics