Abstract
We investigate superposition modulo a Shostak theory T in order to facilitate reasoning in the amalgamation of T and a free theory F. Free operators occur naturally for instance in program verification problems when abstracting over subroutines. If their behaviour in addition can be specified axiomatically, much more of the program semantics can be captured. Combining the Shostak-style components for deciding the clausal validity problem with the ordering and saturation techniques developed for equational reasoning, we derive a refutationally complete calculus on mixed ground clauses which result for example from CNF transforming arbitrary universally quantified formulae. The calculus works modulo a Shostak theory in the sense that it operates on canonizer normalforms. For the Shostak solvers that we study, coherence comes for free: no coherence pairs need to be considered.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation 4(3), 217–247 (1994)
Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order theories. Applicable Algebra in Engineering, Communication and Computing 5(3/4), 193–212 (1994)
Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)
Bürckert, H.-J.: A resolution principle for clauses with constraints. In: Stickel, M.E. (ed.) CADE 1990. LNCS (LNAI), vol. 449, pp. 178–192. Springer, Heidelberg (1990)
Ganzinger, H.: Shostak light. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 332–346. Springer, Heidelberg (2002)
Ganzinger, H., Hillenbrand, T., Waldmann, U.: Superposition modulo a Shostak theory. Technical report, Max-Planck-Institut für Informatik, Saarbrücken (2003)
Godoy, G., Nieuwenhuis, R.: Paramodulation with built-in abelian groups. In: Proceedings of the 15th IEEE Symposium on Logic in Computer Science, pp. 413–424. IEEE Computer Society Press, Los Alamitos (2000)
Jouannaud, J.-P., March´e, C.: Termination and completion modulo associativity, commutativity and identity. Theoretical Computer Science 104(1), 29–51 (1992)
Kapur, D.: A rewrite rule based framework for combining decision procedures. In: Armando, A. (ed.) FroCos 2002. LNCS (LNAI), vol. 2309, pp. 87–102. Springer, Heidelberg (2002)
Krstić, S., Conchon, S.: Canonization for disjoint unions of theories. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 197–211. Springer, Heidelberg (2003)
Le Chenadec, P.: Canonical Forms in Finitely Presented Algebras. John Wiley & Sons, Chichester (1986)
Marché, C.: Normalised rewriting and normalised completion. In: Proceedings of the 9th IEEE Symposium on Logic in Computer Science, pp. 394–403. IEEE Computer Society Press, Los Alamitos (1994)
Middeldorp, A., Zantema, H.: Simple termination revisited. In: Bundy, A. (ed.) CADE 1994. LNCS (LNAI), vol. 814, pp. 451–465. Springer, Heidelberg (1994)
Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Transactions on Programming Languages and Systems 1(2), 245–257 (1979)
Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 7, vol. I, pp. 371–443. Elsevier, Amsterdam (2001)
Plotkin, G.D.: Building-in equational theories. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 7, ch. 4, pp. 73–90. American Elsevier (1972)
Rueß, H., Shankar, N.: Deconstructing Shostak. In: Proceedings of the 16th IEEE Symposium on Logic in Computer Science, pp. 19–28. IEEE Computer Society Press, Los Alamitos (2001)
Shostak, R.E.: Deciding combinations of theories. Journal of the ACM 31(1), 1–12 (1984)
Shankar, N., Rueß, H.: Combining Shostak theories. In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 1–18. Springer, Heidelberg (2002)
Stickel, M.E.: Automated deduction by theory resolution. Journal of Automated Reasoning 1(4), 333–355 (1985)
Stuber, J.: Deriving theory superposition calculi from convergent term rewriting systems. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp. 229–245. Springer, Heidelberg (2000)
Waldmann, U.: Cancellative abelian monoids and related structures in refutational theorem proving (Part I). Journal of Symbolic Computation 33(6), 777–829 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ganzinger, H., Hillenbrand, T., Waldmann, U. (2003). Superposition Modulo a Shostak Theory. In: Baader, F. (eds) Automated Deduction – CADE-19. CADE 2003. Lecture Notes in Computer Science(), vol 2741. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45085-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-45085-6_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40559-7
Online ISBN: 978-3-540-45085-6
eBook Packages: Springer Book Archive