Abstract
In this paper we present a new variational framework in level set form for image segmentation, which incorporates both a prior shape and prior fixed locations of a small number of points. The idea underlying the model is the creation of two energy terms in the energy function for the geodesic active contours. The first energy term is for the shape, the second for the locations of the points In this model, segmentation is achieved through a registration technique, which combines a rigid transformation and a local deformation. The rigid transformation is determined explicitly by using shape information, while the local deformation is determined implicitly by using image gradients and prior locations. We report experimental results on both synthetic and ultrasound images. These results compared with the results obtained by using a previously reported model, which only incorporates a shape prior into the active contours.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aubert, G., Blanc-Feraud, L.: An element proof of the equivalence between 2D and 3D classical snakes and geodesic active active contours. In: INRIA Rapport de Recherche, Janvier 1998, p. 3340 (1998)
Aubert, G., Vese, L.: A variational method in image recovery. SIAM J. Num. Anal. 34(5), 1948–1979 (1997)
Cootes, T., Beeston, C., Edwards, G., Taylor, C.: Unified framework for atlas matching using active appearance models. In: Int’l Conf. Inf. Proc. in Med. Imaging, pp. 322–333. Springer, Heidelberg (1999)
Chen, Y., Tagare, H., Thiruvenkadam, S.R., Huang, F., Wilson, D., Geiser, A., Gopinath, K., Briggs, R.: Using prior shapes in geometric active contours in a variational framework. International Journal of Computer Vision 50(3), 315–328 (2002)
Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numerische Mathematik 66, 1–31 (1993)
Caselles, V., Kimmel, R., Sapiro, G.: On geodesic active contours. Intel. Journal of Computer Vision 22(1), 61–79 (1997)
Cootes, T., Hill, A., Taylor, C., Haslam, J.: The use of active shape models for locating structures in medical images. Image Vision Comput. 13(6), 255–366 (1994)
Chakraborty, A., Staib, H., Duncan, J.: Deformable boundary finding in medical images by integrating gradient and region information. IEEE Transactions on Medical Imaging 15(6), 859–870 (1996)
Cremers, D., Tischhauser, F., Weickert, J., Schnorr, C.: Diffusion-snakes: Introducing statistical shape knowledge into the Mumford-Shah functional. International Journal of Computer Vision 50(3), 295–315 (2002)
Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape model - their training and application. Computer Vision and Image Understanding 61, 38–59 (1995)
Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Processing 10(2), 266–277 (2001)
Dias, J., Leitao, J.: Wall position and thickness estimation from sequences of echocardiograms images. IEEE Trans. Med. Imag. 15, 25–38 (1996)
Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Birkhauser, Basel (1985)
Staib, L.H., Duncan, J.S.: Deformable Fourier models for surface finding in 3D images. In: Robb, R.A. (ed.) Second Conf. on Visualization in Biomedical Computing(VBC 1992), Chapel Hill, NC, vol. 1808, pp. 90–104. SPIE, Bellingham (1992)
Leventon, M.E., Grimson, W.E.L., Faugeras, O.: Statistical Shape Influence in Geodesic Active Contours. In: Proc. IEEE Conf. Comp. Vision and Patt. Recog., pp. 316–323 (2000)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1, 321–331 (1988)
Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.J.: Gradient flows and geometric active contour models. In: Proc. ICCV 1995, pp. 810–815. IEEE Computer Soc. Press, Cambridge (1995)
McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: a survey. Medical Image Analysis 1(2), 91–108 (1996)
Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42, 557–685 (1989)
Malladi, R., Sethian, J., Vemuri, B.: Shape modeling with front propagation: A level set approach. IEEE Trans. Pattern Anal. machine Intell. 17, 158–175 (1995)
Metaxas, D., Terzopoulos, D.: Shape and nonrigid motion estimation through physics-based synthesis. IEEE trans. Pattern Anal. Machine Intelligence 15(6), 580–591 (1993)
McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: a survey. Medical Image Analysis 1(2), 91–108 (1996)
Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithm based on Hamilton-Jacobi formulation. Journal of Computational Physics 70, 12–49 (1988)
Paragios, N.: User-interactive level set method for image segmentation (submitted to ICCV 2003)
Paragios, N., Deriche, R.: Geodesic active regions for supervised texture segmentation. In: ICCV-WS 1999. LNCS, vol. 1883. Springer, Heidelberg (2000)
Paragios, N.: Geodesic active regions and level set methods: contributions and applications in artificial vision. Ph.D. thesis, School of Computer Engineering, University of Nice/Sophia Antipolis (2000)
Paragios, N.: A variational approach for the segmentation of the left ventricle in MR cardiac images. In: Proceedings 1st IEEE Workshop on Variational and Level Set methods in Computer Vision, Vancouver, B.C., Canada, 13 July 2001, pp. 153–160 (2001)
Paragios, N., Rousson, M.: Shape prior for level set representations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 78–92. Springer, Heidelberg (2002)
Paragios, N., Rousson, M., Ramesh, V.: Marching distance functions: a shape-to-area variational approach for global-to-local registration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 775–789. Springer, Heidelberg (2002)
Richard, F., Cohen, L.: A New Image Registration Technique with Free Boundary Constraints: Application to Mammography. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 531–545. Springer, Heidelberg (2002)
Staib, L., Duncan, J.: Boundary finding with parametrically deformable contour methods. IEEE Trans. Patt. Analysis and Mach. Intell. 14(11), 1061–1075 (1992)
Szekel, G., Kelemen, A., Brechbuhler, C., Gerig, G.: Segmentation of 2-D and 3-D objects from MRI volume data using constrained elastic deformation of flexible Fourier surface models. Medical Image Analysis 1(1), 19–34 (1996)
Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two phase flow. J. Comput. Phys. 119, 146–159 (1994)
Soatto, S., Yezzi, A.: Deformation: deforming motion, shape average and joint registration and segmentation of images. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 32–47. Springer, Heidelberg (2002)
Tagare, H.D.: Deformable 2-D Template Matching Using implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Transactions on Image Processing 10(8), 1169–1186 (2001)
Tsai, A., Yezzi Jr., A., Willsky, A.S.: Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Transactions on Image Processing 10(8), 1169–1186 (2001)
Vemuri, B.C., Chen, Y., Wang, Z.: registration associated image smoothing and segmentation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 546–559. Springer, Heidelberg (2002)
Vemuri, B.C., Radisavljevie, A.: Multiresolution stochastic hybrid shape models with fractal priors. ACM Trans. on Graphics 13(2), 177–207 (1994)
Wang, Y., Staih, L.: Boundary funding with corresponding using statistical shape models. In: Proc. IEEE Conf. Comp. Vision and Patt. Recog., pp. 338–345 (1998)
Yuille, A., Hallinan, P.W., Cohen, D.S.: Feature extraction from faces using deformable templates. J. Computer Vision 8, 99–111 (1992)
Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P.J., Tannenbaum, A.: A geometric snake model for segmentation of medical imagery. IEEE Trans. Medical Imaging 16, 199–209 (1997)
Zhao, H.K., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127, 179–195 (1996)
Zhu, S.C., Yuille, A.: Region Competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE PAMI 18, 884–900 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, Y., Guo, W., Huang, F., Wilson, D., Geiser, E.A. (2003). Using Prior Shape and Points in Medical Image Segmentation. In: Rangarajan, A., Figueiredo, M., Zerubia, J. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2003. Lecture Notes in Computer Science, vol 2683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45063-4_19
Download citation
DOI: https://doi.org/10.1007/978-3-540-45063-4_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40498-9
Online ISBN: 978-3-540-45063-4
eBook Packages: Springer Book Archive