Nothing Special   »   [go: up one dir, main page]

Skip to main content

Representing Robot-Environment Interactions by Dynamical Features of Neuro-controllers

  • Chapter
Anticipatory Behavior in Adaptive Learning Systems

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2684))

  • 853 Accesses

Abstract

This article presents a method, which enables an autonomous mobile robot to create an internal representation of the external world. The elements of this internal representation are the dynamical features of a neuro-controller and their time regime during the interaction of the robot with its environment. As an examples of this method the behavior of a Khepera robot is studied, which is controlled by a recurrent neural network. This controller has been evolved to solve an obstacle avoidance task. Analytical investigations show that this recurrent controller has four behavior relevant attractors, which can be directly related to the following environmental categories: free space, obstacle left/right, and deadlock situation. Temporal sequences of those attractors, which occur during a run of the robot are used to characterize the robot-environment interaction. To represent the temporal sequences a technique, called macro-action maps, is applied. Experiments indicate that macro-action maps allow to built up more complex environmental categories and enable an autonomous mobile robot to solve navigation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angeline, P.J., Saunders, G.B., Pollack, J.B.: An Evolutionary Algorithm that Evolves Recurrent Neural Networks. IEEE Transactions on Neural Networks 5, 54–65 (1994)

    Article  Google Scholar 

  2. Arbib, M.A., Erdi, P., Szentagothai, J.: Neural Organization: Structure, Function, and Dynamics. MIT Press, Cambridge (1998)

    Google Scholar 

  3. Bajcsy, R.: Active Perception. In: Proceedings of the IEEE, vol. 76, pp. 996–1005 (1988)

    Google Scholar 

  4. Ballad, D.H.: Animate vision. Artificial Intelligence 48, 57–86 (1991)

    Article  Google Scholar 

  5. Beer, R.: A dynamical systems perspective on agent-environment interaction. Artificial Intelligence 72(1), 173–215 (1995)

    Article  Google Scholar 

  6. Bickhard, M.H., Treveen, L.: Foundational Issues in Artificial Intelligence and Cognitive Science. Elsevier Scientific, Amsterdam (1995)

    Google Scholar 

  7. Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT Press, Cambridge (1984)

    Google Scholar 

  8. Harnard, S.: The symbold grouding problem. Physica D 42, 335–346 (1990)

    Article  Google Scholar 

  9. Hülse, M., Pasemann, F.: Dynamical neural schmitt trigger for robot control. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 783–788. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Hülse, M.: Implementation of homing behavior based on a recurrent neuro-controller and macro-action maps, MPEG video 12.12 (2002), http://www.ais.fraunhofer.de/INDY/aml/X/MRChoming.mpeg

  11. Krichmar, J.L., Edelman, G.M.: Machine Psychology: Autonomous Behavior, Perceptual Categorization, and Conditioning in a Brain-Based Device. Cerebral Cortex 12, 818–830 (2002)

    Article  Google Scholar 

  12. Matarić, M.J.: Navigating With a Rat Brain: A Neurobiologically-Inspired Model for Robot Spatial Representation. In: Proceedings of the International Conference on Simulation of Adaptive Behavior: From Animals to Animats, vol. 3, pp. 282–290 (1994)

    Google Scholar 

  13. Metta, G., Fitzpatrick, P.: Better Vision Through Manipulation. In: Prince, C.G., Demiris, Y., Marom, Y., Kozima, H., Balkenius, C. (eds.) Proceedings of the Second International Workshop on Epigenetic Robotics: Modeling Cognitive Developement in Robotic Systems. Lund University Cognitive Studies, vol. 94, pp. 97–104 (2002)

    Google Scholar 

  14. Michel, O.: Khepera Simulator Package version 2.0: Freeware mobile robot simulator written at the University of Nice Sophia-Antipolis by Oliver Michel. Downloadable from the World Wide, Web at http://wwwi3s.unice.fr/~om/khep-sim.html

  15. Möller, R.: Perception Through Anticipation - A Behavior-Based Approach to Visual Perception. In: Riegler, A., von Stein, A., Peschl, M. (eds.) Understanding Representation in the Cognitive Sciences. Plenum Press, New York (1999)

    Google Scholar 

  16. Mondada, F., Franzi, E., Ienne, P.: Mobile robots miniaturization: a tool for investigation in Control Algorithms. In: Proceedings of ISER 1993, Kyoto (October 1993)

    Google Scholar 

  17. Mondada, F., Floreano, D.: Evolution of neural control structures: Some experiments on mobile robots. Robotics and Autonomous Systems 16, 183–195 (1995)

    Article  Google Scholar 

  18. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press, Cambridge (2000)

    Google Scholar 

  19. Nolfi, S., Marocco, D.: Active Perception: A Sensorimotor Account of Object Categorization. In: Proceedings of the 7th International Conference on Simulation of Adaptive Behavior: From Animals to Animats, vol. 7, pp. 266–271 (2002)

    Google Scholar 

  20. Pasemann, F.: Dynamics of a single model neuron. International Journal of Bifurcation and Chaos 2, 271–278 (1993)

    Article  MathSciNet  Google Scholar 

  21. Pasemann, F.: Neuromodules: A dynamical systems approach to brain modelling. In: Herrmann, H., Pöppel, E., Wolf, D. (eds.) Supercomputing in Brain Research - From Tomography to Neural Networks, pp. 331–347. World Scientific, Singapore (1995)

    Google Scholar 

  22. Pasemann, F.: Characteristics of periodic attractors in neural ring networks. Neural Networks 8, 421–429 (1995)

    Article  Google Scholar 

  23. Pasemann, F., Steinmetz, U., Hülse, M., Lara, B.: Robot control and the evolution of modular neurodynamics. Theory in Biosciences 120, 311–326 (2001)

    Google Scholar 

  24. Tani, J.: An Interpretation of the “Self” From the Dynamical Systems Perspective: A Constructivist Approach. Journal of Consciousness Studies 5(5-6) (1998)

    Google Scholar 

  25. Tani, J., Sugita, Y.: On the Dynamics of Robot Exploration Learning. In: Floreano, D., Mondada, F. (eds.) ECAL 1999. LNCS, vol. 1674, pp. 279–288. Springer, Heidelberg (1999)

    Google Scholar 

  26. Wolpert, D.M., Ghahramani, Z., Flanagan, J.R.: Perspectives and problems in motor learning. Trends in Cognitive Science 5(11), 487–494 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hülse, M., Zahedi, K., Pasemann, F. (2003). Representing Robot-Environment Interactions by Dynamical Features of Neuro-controllers. In: Butz, M.V., Sigaud, O., Gérard, P. (eds) Anticipatory Behavior in Adaptive Learning Systems. Lecture Notes in Computer Science(), vol 2684. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45002-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45002-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40429-3

  • Online ISBN: 978-3-540-45002-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics