Abstract
Mannila and Räihä [5] have shown that minimum implicational bases can have an exponential number of implications. Aim of our paper is to understand how and why this combinatorial explosion arises and to propose mechanisms which reduce it.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Guigues, J.-L., Duquenne, V.: Famille minimale d’implications informatives résultant d’un tableau de donneés binaires. Mathématiques et sciences humaines, 24 (1986)
Eiter, T., Gottlob, G.: Hypergraph transversal computation and related problems in logic and AI. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 549–564. Springer, Heidelberg (2002)
Ganter, B.: Finding closed sets under symmetry, FB4-Preprint 1307, TH Darmstadt (1990)
Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Springer, Heidelberg (1999)
Mannila, H., Räihä, K.J.: On the complexity of inferring functional dependencies. Discrete Applied Mathematics 40(2), 237–243 (1992)
Medina, R., Nourine, L.: Clone items: a pre-processing information for knowledge discovery (Submitted)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gély, A., Medina, R., Nourine, L., Renaud, Y. (2005). Uncovering and Reducing Hidden Combinatorics in Guigues-Duquenne Bases. In: Ganter, B., Godin, R. (eds) Formal Concept Analysis. ICFCA 2005. Lecture Notes in Computer Science(), vol 3403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32262-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-540-32262-7_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24525-4
Online ISBN: 978-3-540-32262-7
eBook Packages: Computer ScienceComputer Science (R0)