Nothing Special   »   [go: up one dir, main page]

Skip to main content

Evolving Reversible Circuits for the Even-Parity Problem

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3449))

Included in the following conference series:

Abstract

Reversible computing basically means computation with less or not at all electrical power. Since the standard binary gates are not usually reversible we use the Fredkin gate in order to achieve reversibility. An algorithm for designing reversible digital circuits is described in this paper. The algorithm is based on Multi Expression Programming (MEP), a Genetic Programming variant with a linear representation of individuals. The case of digital circuits for the even-parity problem is investigated. Numerical experiments show that the MEP-based algorithm is able to easily design reversible digital circuits for up to the even-8-parity problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bellman, R.: Dynamic Programming. Princeton University Press, New Jersey (1957)

    MATH  Google Scholar 

  2. Bennett, C.H., Landauer, R.: Fundamental physical limits of computation. Scientific American 253, 48–56 (1985)

    Article  Google Scholar 

  3. Fredkin, E., Toffoli, T.: Conservative logic. International Journal of Theoretical Physics 21, 219–253 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  4. Klein, J.P., Leete, T.H., Rubin, H.: A Biomolecular Implementation of Logically Reversible Computation with Minimal Energy Dissipation. BioSystems 52, 15–23 (1999)

    Article  Google Scholar 

  5. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  6. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Subprograms. MIT Press, Cambridge (1994)

    Google Scholar 

  7. Landauer, R.: Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5, 183–191 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  8. Langdon, W.B.: The Distribution of Reversible Functions is Normal. In: Riolo, R.L., Worzel, B. (eds.) Genetic Programming Theory and Practise, pp. 173–188. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  9. Merkle, R.C.: Reversible Electronic Logic Using Switches. Nanotechnology 4, 21–40 (1993)

    Article  Google Scholar 

  10. Oltean, M.: Solving Even-parity problems with Multi Expression Programming. In: Chen, K., et al. (eds.) The 8th International Conference on Computation Sciences, North Carolina, pp. 315–318 (2003)

    Google Scholar 

  11. Oltean, M., Grosan, C.: Evolving Digital Circuits using Multi Expression Programming. In: Zebulum, R., Gwaltney, D., Horbny, G., Keymeulen, D., Lohn, J., Stoica, A. (eds.) NASA/DoD Conference on Evolvable Hardware, Seattle, June 24-26, pp. 87–90. IEEE Press, NJ (2004)

    Chapter  Google Scholar 

  12. Oltean, M.: Improving Multi Expression Programming: an Ascending Trail from Sea-level Even-3-parity Problem to Alpine Even-18-Parity Problem. In: Nedjah, N., et al. (eds.) Evolutionary Machine Design, contributed ch. 15. Studies in Soft Computing and Fuzziness, vol. 161, pp. 229–255. Springer, Heidelberg (2004)

    Google Scholar 

  13. Miller, J.F., Job, D., Vassilev, V.K.: Principles in the Evolutionary Design of Digital Circuits - Part I. Genetic Programming and Evolvable Machines 1(1), 7–35 (2000)

    Article  MATH  Google Scholar 

  14. Poli, R., Page, J.: Solving High-Order Boolean Parity Problems with Smooth Uniform Crossover, Sub-Machine Code GP and Demes. Journal of Genetic Programming and Evolvable Machines, 1–21 (2000)

    Google Scholar 

  15. Syswerda, G.: Uniform Crossover in Genetic Algorithms. In: Schaffer, J.D. (ed.) Proceedings of the 3rd International Conference on Genetic Algorithms, pp. 2–9. Morgan Kaufmann Publishers, San Mateo (1989)

    Google Scholar 

  16. Toffoli, T.: Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.) Automata, Languages and Programming, 7th Colloquium. LNCS, vol. 75, pp. 632–644. Springer, Heidelberg (1980)

    Google Scholar 

  17. Wolpert, D.H., McReady, W.G.: No Free Lunch Theorems for Search, Technical Report, SFI-TR-05-010, Santa Fe Institute (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oltean, M. (2005). Evolving Reversible Circuits for the Even-Parity Problem. In: Rothlauf, F., et al. Applications of Evolutionary Computing. EvoWorkshops 2005. Lecture Notes in Computer Science, vol 3449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32003-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32003-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25396-9

  • Online ISBN: 978-3-540-32003-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics