Abstract
We consider qualitative and quantitative model-checking problems for probabilistic pushdown automata (pPDA) and various temporal logics. We prove that the qualitative and quantitative model-checking problem for ω-regular properties and pPDA is in 2-EXPSPACE and 3-EXPTIME, respectively. We also prove that model-checking the qualitative fragment of the logic PECTL* for pPDA is in 2-EXPSPACE, and model-checking the qualitative fragment of PCTL for pPDA is in 2-EXPSPACE. Furthermore, model-checking the qualitative fragment of PCTL is shown to be EXPTIME-hard even for stateless pPDA. Finally, we show that PCTL model-checking is undecidable for pPDA, and PCTL + model-checking is undecidable even for stateless pPDA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdulla, P.A., Baier, C., Iyer, S.P., Jonsson, B.: Reasoning about probabilistic channel systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 320–330. Springer, Heidelberg (2000)
Abdulla, P.A., Rabinovich, A.: Verification of probabilistic systems with faulty communication. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 39–53. Springer, Heidelberg (2003)
Alur, R., Etessami, K., Yannakakis, M.: Analysis of recursive state machines. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 207–220. Springer, Heidelberg (2001)
Aziz, A., Singhal, V., Balarin, F., Brayton, R., Sangiovanni-Vincentelli, A.: It usually works: The temporal logic of stochastic systems. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 155–165. Springer, Heidelberg (1995)
Baier, C., Engelen, B.: Establishing qualitative properties for probabilistic lossy channel systems: an algorithmic approach. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 34–52. Springer, Heidelberg (1999)
Bertrand, N., Schnoebelen, P.: Model checking lossy channel systems is probably decidable. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 120–135. Springer, Heidelberg (2003)
Brázdil, T., Kučera, A., Stražovský, O.: Deciding probabilistic bisimilarity over infinite-state probabilistic systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 193–208. Springer, Heidelberg (2004)
Brázdil, T., Kučera, A., Stražovský, O.: On the decidability of temporal properties of probabilistic pushdown automata. Technical report FIMU-RS-2005-01, Faculty of Informatics, Masaryk University (2005)
Canny, J.: Some algebraic and geometric computations in PSPACE. In: Proceedings of STOC 1988, pp. 460–467. ACM Press, New York (1988)
Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. JACM 42(4), 857–907 (1995)
Couvreur, J.M., Saheb, N., Sutre, G.: An optimal automata approach to LTL model checking of probabilistic systems. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 361–375. Springer, Heidelberg (2003)
Esparza, J., Knoop, J.: An automata-theoretic approach to interprocedural data-flow analysis. In: Thomas, W. (ed.) FOSSACS 1999. LNCS, vol. 1578, pp. 14–30. Springer, Heidelberg (1999)
Esparza, J., Kučera, A., Mayr, R.: Model-checking probabilistic pushdown automata. In: Proceedings of LICS 2004, pp. 12–21. IEEE, Los Alamitos (2004)
Esparza, J., Kučera, A., Schwoon, S.: Model-checking LTL with regular valuations for pushdown systems. I&C 186(2), 355–376 (2003)
Etessami, K., Yannakakis, M.: Algorithmic verification of recursive probabilistic systems. Technical Report, School of Informatics, U. of Edinburgh (2005)
Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and monotone systems of non-linear equations. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 340–352. Springer, Heidelberg (2005)
Grigoriev, D.: Complexity of deciding Tarski algebra. Journal of Symbolic Computation 5(1-2), 65–108 (1988)
Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6, 512–535 (1994)
Hart, S., Sharir, M.: Probabilistic temporal logic for finite and bounded models. In: Proceedings of POPL 1984, pp. 1–13. ACM Press, New York (1984)
Huth, M., Kwiatkowska, M.Z.: Quantitative analysis and model checking. In: Proceedings of LICS 1997, pp. 111–122. IEEE, Los Alamitos (1997)
Iyer, S.P., Narasimha, M.: Probabilistic lossy channel systems. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS, vol. 1214, pp. 667–681. Springer, Heidelberg (1997)
Kwiatkowska, M.Z.: Model checking for probability and time: from theory to practice. In: Proceedings of LICS 2003, pp. 351–360. IEEE, Los Alamitos (2003)
Lehman, D., Shelah, S.: Reasoning with time and chance. I&C 53, 165–198 (1982)
Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)
Rabinovich, A.: Quantitative analysis of probabilistic lossy channel systems. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1008–1021. Springer, Heidelberg (2003)
Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs. In: Proceedings of FOCS 1985, pp. 327–338. IEEE, Los Alamitos (1985)
Walukiewicz, I.: Model checking CTL properties of pushdown systems. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 127–138. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brázdil, T., Kučera, A., Stražovský, O. (2005). On the Decidability of Temporal Properties of Probabilistic Pushdown Automata. In: Diekert, V., Durand, B. (eds) STACS 2005. STACS 2005. Lecture Notes in Computer Science, vol 3404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31856-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-540-31856-9_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24998-6
Online ISBN: 978-3-540-31856-9
eBook Packages: Computer ScienceComputer Science (R0)