Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Decidability of Temporal Properties of Probabilistic Pushdown Automata

  • Conference paper
STACS 2005 (STACS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3404))

Included in the following conference series:

Abstract

We consider qualitative and quantitative model-checking problems for probabilistic pushdown automata (pPDA) and various temporal logics. We prove that the qualitative and quantitative model-checking problem for ω-regular properties and pPDA is in 2-EXPSPACE and 3-EXPTIME, respectively. We also prove that model-checking the qualitative fragment of the logic PECTL* for pPDA is in 2-EXPSPACE, and model-checking the qualitative fragment of PCTL for pPDA is in 2-EXPSPACE. Furthermore, model-checking the qualitative fragment of PCTL is shown to be EXPTIME-hard even for stateless pPDA. Finally, we show that PCTL model-checking is undecidable for pPDA, and PCTL +  model-checking is undecidable even for stateless pPDA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdulla, P.A., Baier, C., Iyer, S.P., Jonsson, B.: Reasoning about probabilistic channel systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 320–330. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Abdulla, P.A., Rabinovich, A.: Verification of probabilistic systems with faulty communication. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 39–53. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Alur, R., Etessami, K., Yannakakis, M.: Analysis of recursive state machines. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 207–220. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Aziz, A., Singhal, V., Balarin, F., Brayton, R., Sangiovanni-Vincentelli, A.: It usually works: The temporal logic of stochastic systems. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 155–165. Springer, Heidelberg (1995)

    Google Scholar 

  5. Baier, C., Engelen, B.: Establishing qualitative properties for probabilistic lossy channel systems: an algorithmic approach. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 34–52. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Bertrand, N., Schnoebelen, P.: Model checking lossy channel systems is probably decidable. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 120–135. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Brázdil, T., Kučera, A., Stražovský, O.: Deciding probabilistic bisimilarity over infinite-state probabilistic systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 193–208. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Brázdil, T., Kučera, A., Stražovský, O.: On the decidability of temporal properties of probabilistic pushdown automata. Technical report FIMU-RS-2005-01, Faculty of Informatics, Masaryk University (2005)

    Google Scholar 

  9. Canny, J.: Some algebraic and geometric computations in PSPACE. In: Proceedings of STOC 1988, pp. 460–467. ACM Press, New York (1988)

    Google Scholar 

  10. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. JACM 42(4), 857–907 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Couvreur, J.M., Saheb, N., Sutre, G.: An optimal automata approach to LTL model checking of probabilistic systems. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 361–375. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Esparza, J., Knoop, J.: An automata-theoretic approach to interprocedural data-flow analysis. In: Thomas, W. (ed.) FOSSACS 1999. LNCS, vol. 1578, pp. 14–30. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Esparza, J., Kučera, A., Mayr, R.: Model-checking probabilistic pushdown automata. In: Proceedings of LICS 2004, pp. 12–21. IEEE, Los Alamitos (2004)

    Google Scholar 

  14. Esparza, J., Kučera, A., Schwoon, S.: Model-checking LTL with regular valuations for pushdown systems. I&C 186(2), 355–376 (2003)

    MATH  Google Scholar 

  15. Etessami, K., Yannakakis, M.: Algorithmic verification of recursive probabilistic systems. Technical Report, School of Informatics, U. of Edinburgh (2005)

    Google Scholar 

  16. Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and monotone systems of non-linear equations. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 340–352. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Grigoriev, D.: Complexity of deciding Tarski algebra. Journal of Symbolic Computation 5(1-2), 65–108 (1988)

    Article  MathSciNet  Google Scholar 

  18. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6, 512–535 (1994)

    Article  MATH  Google Scholar 

  19. Hart, S., Sharir, M.: Probabilistic temporal logic for finite and bounded models. In: Proceedings of POPL 1984, pp. 1–13. ACM Press, New York (1984)

    Google Scholar 

  20. Huth, M., Kwiatkowska, M.Z.: Quantitative analysis and model checking. In: Proceedings of LICS 1997, pp. 111–122. IEEE, Los Alamitos (1997)

    Google Scholar 

  21. Iyer, S.P., Narasimha, M.: Probabilistic lossy channel systems. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS, vol. 1214, pp. 667–681. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  22. Kwiatkowska, M.Z.: Model checking for probability and time: from theory to practice. In: Proceedings of LICS 2003, pp. 351–360. IEEE, Los Alamitos (2003)

    Google Scholar 

  23. Lehman, D., Shelah, S.: Reasoning with time and chance. I&C 53, 165–198 (1982)

    Google Scholar 

  24. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  25. Rabinovich, A.: Quantitative analysis of probabilistic lossy channel systems. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1008–1021. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  26. Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs. In: Proceedings of FOCS 1985, pp. 327–338. IEEE, Los Alamitos (1985)

    Google Scholar 

  27. Walukiewicz, I.: Model checking CTL properties of pushdown systems. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 127–138. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brázdil, T., Kučera, A., Stražovský, O. (2005). On the Decidability of Temporal Properties of Probabilistic Pushdown Automata. In: Diekert, V., Durand, B. (eds) STACS 2005. STACS 2005. Lecture Notes in Computer Science, vol 3404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31856-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31856-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24998-6

  • Online ISBN: 978-3-540-31856-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics